Abstract

The structural synthesis of planar kinematic chains (KCs) with prismatic pairs (P-pairs) is the basis of innovating mechanisms containing P-pairs. In the literature, only a little research has been carried out to synthesize planar KCs with P-pairs. Moreover, these synthesis methods for KCs with P-pairs involve all possible combinations of edges, resulting in a large number of isomorphic KCs and a low synthesis efficiency. In this study, our previous similarity recognition algorithm is improved and applied to synthesize planar KCs with P-pairs. Only a small number of isomorphic KCs are generated in the synthesis process and the synthesis efficiency is greatly enhanced. Our method is applied to synthesize 9-link 2-DOF, 10-link 1-DOF, and 11-link 2-DOF KCs with one and two P-pairs. Our synthesis results are consistent with those of the existing literature. The present work is helpful to design mechanisms with P-pairs and can be extended to mechanisms with other types of kinematic pairs.

References

1.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
2.
Yan
,
H. S.
,
1992
, “
A Methodology for Creative Mechanism Design
,”
Mech. Mach. Theory
,
27
(
3
), pp.
235
242
.
3.
Yang
,
W.
, and
Ding
,
H.
,
2019
, “
The Complete set of one-Degree-of-Freedom Planetary Gear Trains With up to Nine Links
,”
ASME J. Mech. Des.
,
141
(
4
), p.
043301
.
4.
Gilmartin
,
M. J.
, and
Duffy
,
J.
,
1969
, “
Limit Positions of Four-Link Spatial Mechanisms—2. Mechanisms Having Revolute, Cylindric and Prismatic Pairs
,”
J. Mech.
,
4
(
3
), pp.
273
281
.
5.
Freudenstein
,
F.
, and
Maki
,
E. R.
,
1979
, “
The Creation of Mechanisms According to Kinematic Structure and Function
,”
Environ. Plan B Plann Des.
,
6
(
4
), pp.
375
391
.
6.
Yan
,
H. S.
, and
Hwang
,
Y. W.
,
1991
, “
The Specialization of Mechanisms
,”
Mech. Mach. Theory
,
26
(
6
), pp.
541
551
.
7.
Chen
,
D. Z.
, and
Pai
,
W. M.
,
2005
, “
A Methodology for Conceptual Design of Mechanisms by Parsing Design Specifications
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1039
1044
.
8.
Pucheta
,
M.
, and
Cardona
,
A.
,
2007
, “
An Automated Method for Type Synthesis of Planar Linkages Based on a Constrained Subgraph Isomorphism Detection
,”
Multibody Sys. Dyn.
,
18
(
2
), pp.
233
258
.
9.
Popescu
,
I.
, and
Marghitu
,
D. B.
,
2008
, “
Structural Design of Planar Mechanisms With Dyads
,”
Multibody Sys. Dyn.
,
19
(
4
), pp.
407
425
.
10.
Ding
,
W.
, and
Yao
,
Y. A.
,
2013
, “
A Novel Deployable Hexahedron Mobile Mechanism Constructed by Only Prismatic Joints
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041016
.
11.
Li
,
S. J.
,
Wang
,
H. G.
, and
Dai
,
J. S.
,
2015
, “
Assur-Group Inferred Structural Synthesis for Planar Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041001
.
12.
Kang
,
S. W.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2016
, “
Topology Optimization of Planar Linkage Systems Involving General Joint Types
,”
Mech. Mach. Theory
,
104
, pp.
130
160
.
13.
Olson
,
D. G.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
,
1985
, “
A Systematic Procedure for Type Synthesis of Mechanisms With Literature Review
,”
Mech. Mach. Theory
,
20
(
4
), pp.
285
295
.
14.
Hung
,
C. C.
,
Yan
,
H. S.
, and
Pennock
,
G. R.
,
2008
, “
A Procedure to Count the Number of Planar Mechanisms Subject to Design Constraints From Kinematic Chains
,”
Mech. Mach. Theory
,
43
(
6
), pp.
676
694
.
15.
Mruthyunjaya
,
T.
,
1984
, “
A Computerized Methodology for Structural Synthesis of Kinematic Chains: Part 1—Formulation
,”
Mech. Mach. Theory
,
19
(
6
), pp.
487
495
.
16.
Rao
,
A.
,
1997
, “
Hamming Number Technique—II. Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
32
(
4
), pp.
489
499
.
17.
Tuttle
,
E. R.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
.
18.
Sunkari
,
R. P.
, and
Schmidt
,
L. C.
,
2006
, “
Structural Synthesis of Planar Kinematic Chains by Adapting a Mckay-Type Algorithm
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1021
1030
.
19.
Ding
,
H.
,
Cao
,
W.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Complete Atlas Database of 2-DOF Kinematic Chains and Creative Design of Mechanisms
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031006
.
20.
Ding
,
H.
,
Hou
,
F.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Synthesis of the Whole Family of Planar 1-DOF Kinematic Chains and Creation of Their Atlas Database
,”
Mech. Mach. Theory
,
47
, pp.
1
15
.
21.
Yan
,
H. S.
, and
Chiu
,
Y. T.
,
2015
, “
On the Number Synthesis of Kinematic Chains
,”
Mech. Mach. Theory
,
89
, pp.
128
144
.
22.
Ding
,
H.
,
Huang
,
P.
,
Yang
,
W.
, and
Kecskeméthy
,
A.
,
2016
, “
Automatic Generation of the Complete Set of Planar Kinematic Chains With up to six Independent Loops and up to 19 Links
,”
Mech. Mach. Theory
,
96
, pp.
75
93
.
23.
Dharanipragada
,
V.
, and
Chintada
,
M.
,
2016
, “
Split Hamming String as an Isomorphism Test for One Degree-of-Freedom Planar Simple-Jointed Kinematic Chains Containing Sliders
,”
ASME J. Mech. Des.
,
138
(
8
), p.
082301
.
24.
Eleashy
,
H.
,
2018
, “
A New Atlas for 8-Bar Kinematic Chains With up to 3 Prismatic Pairs Using Joint Sorting Code
,”
Mech. Mach. Theory
,
124
, pp.
118
132
.
25.
Yang
,
W.
,
Ding
,
H.
, and
Kecskeméthy
,
A.
,
2018
, “
Automatic Synthesis of Plane Kinematic Chains with Prismatic Pairs and up to 14 Links
,”
Mech. Mach. Theory
,
132
, pp.
236
247
.
26.
Harary
,
F.
, and
Palmer
,
E. M.
,
1966
, “
On Similar Points of a Graph
,”
J. Math. Mech.
,
15
, pp.
623
630
.
27.
Freudenstein
,
F.
,
1967
, “
The Basic Concepts of Polya's Theory of Enumeration, With Application to the Structural Classification of Mechanisms
,”
J. Mech.
,
2
(
3
), pp.
275
290
.
28.
Lv
,
T.
,
1989
, “
Sufficient and Necessary Conditions for Similarity
,”
J. Beijing Univ. Technol.
,
15
(
4
), pp.
63
66
.
29.
Wang
,
Y. X.
, and
Yan
,
H. S.
,
2002
, “
Computerized Rules-Based Regeneration Method for Conceptual Design of Mechanisms
,”
Mech. Mach. Theory
,
37
(
9
), pp.
833
849
.
30.
Rao
,
A. C.
,
2000
, “
A Genetic Algorithm for Topological Characteristics of Kinematic Chains
,”
ASME J. Mech. Des.
,
122
(
2
), pp.
228
231
.
31.
Kuo
,
C.
, and
Shih
,
K.
,
2008
, “
Computational Identification of Link Adjacency and Joint Incidence in Kinematic Chains and Mechanisms
,”
ASME J. Mech. Des.
,
130
(
8
), p.
084501
.
32.
Sun
,
L.
,
Cui
,
R.
,
Ye
,
Z.
,
Zhou
,
Y.
,
Xu
,
Y.
, and
Wu
,
C.
,
2020
, “
Similarity Recognition and Isomorphism Identification of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
145
, p.
103678
.
33.
Sun
,
L.
,
Ye
,
Z.
,
Cui
,
R.
,
Yang
,
W.
, and
Wu
,
C.
,
2020
, “
Compound Topological Invariant Based Method for Detecting Isomorphism in Planar Kinematic Chains
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
054504
.
34.
Lu
,
K.
, and
Lu
,
H.
,
1995
,
Graph Theory and Application
,
Tsinghua University Press
,
Beijing
.
You do not currently have access to this content.