Abstract

This contribution presents a screw theory-based method for determining the mobility of fully parallel platforms. The method is based on the application of three stages. The first stage involves the application of the intersection of subalgebras of Lie algebra, se(3), of the special Euclidean group, SE(3), associated with the legs of the platform. The second stage analyzes the possibility of the legs of the platform generating a sum or direct sum of two subalgebras of the Lie algebra, se(3). The last stage, if necessary, considers the possibility of the kinematic pairs of the legs satisfying certain velocity conditions; these conditions reduce the platform’s mobility analysis to one that can be solved using one of the two previous stages. Several examples are illustrated.

References

1.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
2.
Hervé
,
J.
,
1978
, “
Analyse structurelle des mécanismes par groupe des déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
3.
Rico
,
J. M.
,
Jesús Cervantes-Sánchez
,
J.
, and
Olivares-Conraud
,
E.
,
2019
, “On the History of the Discovery of the Subgroups of the Euclidean Group,”
Advances in Mechanism and Machine Science
,
T.
Uhl
, ed.,
Springer International Publishing
,
Cham
, pp.
1233
1239
.
4.
Fanghella
,
P.
, and
Galletti
,
C.
,
1995
, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
,
117
(
3
), pp.
470
478
.
5.
Fanghella
,
P.
, and
Galletti
,
C.
,
1994
, “
Mobility Analysis of Single-Loop Kinematic Chains: An Algorithmic Approach Based on Displacement Groups
,”
Mech. Mach. Theory
,
29
(
8
), pp.
1187
1204
.
6.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodriguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
,
2006
, “
A Group Theoretical Derivation of a More General Mobility Criterion for Parallel Manipulators
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
220
(
7
), pp.
969
987
.
7.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
8.
Voinea
,
R. P.
, and
Atanasiu
,
M. C.
,
1962
, “
Théorie géométrique des vis et quelquels applications á la théorie des mécanismes
,”
Rev. Mec. Appl.
,
7
, pp.
845
860
.
9.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press; Oxford University Press
,
New York; Oxford
.
10.
Selig
,
J. M.
,
1996
,
Geometrical Methods in Robotics
,
Springer
,
New York
.
11.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodriguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
,
2005
, “
A More General Mobility Criterion for Parallel Platforms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
207
219
.
12.
Huang
,
Z.
,
Liu
,
J.
, and
Zeng
,
D.
,
2008
, “
A General Methodology for Mobility Analysis of Mechanisms Based on Constraint Screw Theory
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
5
), pp.
1337
1347
.
13.
Wang
,
L.
, and
Xi
,
J.
, eds.,
2008
,
Smart Devices and Machines for Advanced Manufacturing
,
Springer
,
London
, pp.
49
78
,
Ch. A Unified Methodology for Mobility Analysis Based on Screw Theory, Huang, Z., and Li, Q
.
14.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
15.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Ravani
,
B.
,
2003
, “
Lie Algebra and the Mobility of Kinematic Chains
,”
J. Rob. Syst.
,
20
(
8
), pp.
477
499
.
16.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2008
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
.
17.
Yang
,
T.-L.
, and
Sun
,
D.-J.
,
2012
, “
A General Degree of Freedom Formula for Parallel Mechanisms and Multiloop Spatial Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011001
.
18.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Shen
,
H.-P.
,
Luo
,
Y.-F.
,
Hang
,
L.-B.
, and
Shi
,
Z.-X.
,
2013
, “
On the Correctness and Strictness of the Position and Orientation Characteristic Equation for Topological Structure Design of Robot Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021009
.
19.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Hang
,
L.-B.
, and
Shen
,
H.-P.
,
2009
, “
A Systematical Approach for Structure Synthesis of Parallel Mechanisms Based on Single-Open-Chain Modules and Its Application
,”
Proc. ASME. IDETC-CIE2009, Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
1183
1194
.
20.
Yang
,
T.-L.
,
Liu
,
A.
,
Shen
,
H.
,
Hang
,
L.
,
Luo
,
Y.
, and
Jin
,
Q.
,
2018
,
Topology Design of Robot Mechanisms
,
Springer
,
Singapore
.
21.
Yang
,
T.-L.
,
Luo
,
Y.-F.
,
Zhang
,
L.-P.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2009
, “
Comparison Study on Three Approaches for Type Synthesis of Robot Mechanisms
,”
ASME. IDETC-CIE2009, Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
453
462
.
22.
Aguilera-Camacho
,
D.
,
2003
, “
Mobility in Single-Loop Kinematic Chains and Parallel Platforms
,”
MS thesis
,
Instituto Tecnológico de Celaya
,
México
, in Spanish.
23.
Huang
,
Z.
, and
Li
,
Q.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.
24.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
25.
Tadeo-Chávez
,
A.
, and
Pérez-Soto
,
G. I.
,
2006
, “
Number Synthesis of Kinematic Chains, a New Focus and New Mathematical Tools
,”
MS thesis
,
Universidad de Guanajuato
,
México
, in Spanish.
26.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chávez
,
A.
,
Pérez-Soto
,
G. I.
, and
Rocha-Chavarra
,
J.
,
2008
, “
New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112302
.
27.
Tadeo-Chávez
,
A.
,
2011
, “
Determination of the Subspaces of the Lie Algebra of the Euclidean Group that Preserve the Mobility of Kinematic Chains
,”
PhD thesis
,
Universidad de Guanajuato
,
México
, in Spanish.
28.
Tadeo-Chávez
,
A.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Pérez-Soto
,
G. I.
, and
Müller
,
A.
,
2011
, “
Screw Systems Generated by Subalgebras: A Further Analysis
,”
ASME. IDETC-CIE2011, Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
,
Washington, DC
,
Aug. 28–31
, pp.
1037
1049
.
29.
Pérez-Soto
,
G. I.
,
2013
, “
Mobility Analysis and Synthesis of Kinematic Chains by Means of Subspaces of Locally Constant Rank
,”
PhD thesis
,
Universidad de Guanajuato
,
México
, in Spanish.
30.
Álvarez-Pérez
,
M.
,
2018
, “
Design and Kinematic Analysis of a Parallel Robot for Ankle Rehabilitation
,”
MS thesis
,
Universidad de Guanajuato
,
México
, in Spanish.
31.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2002
, “
Structure Synthesis of a Class of 4-DOF and 5-DOF Parallel Manipulators With Identical Limb Structures
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
799
810
.
32.
Martínez
,
J. M. R.
, and
Duffy
,
J.
,
1998
, “
A General Method for the Computation of the Canonical Form of Three-Systems of Infinitesimal Screws
,”
Robotica
,
16
(
1
), pp.
37
45
.
33.
Sánchez-García
,
A. J.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
, and
López-Custodio
,
P. C.
,
2020
, “
A Mobility Determination Method for Parallel Platforms Based on the Lie Algebra of SE(3) and Its Subspaces
,”
ASME. IDETC-CIE2020, Volume 10: 44th Mechanisms and Robotics Conference (MR)
,
Virtual, Online
,
Aug. 17–19
, p.
V010T10A092
. http://dx.doi.org/10.1115/DETC2020-22456
34.
Bi
,
Z.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Rob. Comput. Int. Manuf.
,
27
(
1
), pp.
186
193
.
35.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2010
, “
Kinematics Analysis of the Exechon Tripod
,”
ASME. IDETC-CIE2010, Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
1381
1388
.
You do not currently have access to this content.