Abstract

The ability to deploy a planar surface to a desired convex profile with a simple actuation can enhance foldable or morphing airfoils, deployable antennae and reflectors, and other applications where a specific profile geometry is desired from a planar sheet. A model using a system of rigid links joined by torsional springs of tailorable stiffness is employed to create an approximate curved surface when two opposing tip loads are applied. A system of equations describing the shape of the surface during deployment is developed. The physical implementation of the model uses compliant torsion bars as the torsion springs. A multidimensional optimization algorithm is presented to place joints to minimize the error from the rigid-link approximation and account for additional manufacturing and stress considerations in the torsion bars. A proof is presented to show that equal torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in minimizing the area between the model’s rigid-link approximation and smooth curve. The model is demonstrated through the physical construction of a deployable airfoil surface and a metallic deployable parabolic reflector.

References

1.
Nelson
,
T. G.
,
Baldelomar Pinto
,
L. M.
,
Bruton
,
J. T.
,
Deng
,
Z.
,
Nelson
,
C. G.
, and
Howell
,
L. L.
,
2020
, “
Deployable Convex Generalized Cylindrical Surfaces Using Torsional Joints
,”
ASME 2020 IDETC/CIE
,
Virtual, Online
,
Aug. 17–19
.
2.
Struik
,
D. J.
,
1961
,
Lectures on Classical Differential Geometry
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
3.
Cammarata
,
A.
,
2016
, “
Unified Formulation for the Stiffness Analysis of Spatial Mechanisms
,”
Mech. Mach. Theory
,
105
(
11
), pp.
272
284
.
4.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
(
3
), pp.
365
394
.
5.
Pozzi
,
M.
,
Miguel
,
E.
,
Deimel
,
R.
,
Malvezzi
,
M.
,
Bickel
,
B.
,
Brock
,
O.
, and
Prattichizzo
,
D.
,
2018
, “
Efficient FEM-Based Simulation of Soft Robots Modeled as Kinematic Chains
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
4206
4213
.
6.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2013
, “
CAD-Based Approach for Identification of Elasto-Static Parameters of Robotic Manipulators
,”
Finite Elements Anal. Des.
,
75
(
12
), pp.
19
30
.
7.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
8.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
(
5
), pp.
662
679
.
9.
Majou
,
F.
,
Gosselin
,
C.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2007
, “
Parametric Stiffness Analysis of the Orthoglide
,”
Mech. Mach. Theory
,
42
(
3
), pp.
296
311
.
10.
Chillara
,
V.
, and
Dapino
,
M. J.
,
2020
, “
Review of Morphing Laminated Composites
,”
ASME Appl. Mech. Rev.
,
72
(
1
), p.
010801
.
11.
Aoki
,
M.
, and
Juang
,
J.-Y.
,
2018
, “
Forming Three-Dimensional Closed Shapes From Two-Dimensional Soft Ribbons by Controlled Buckling
,”
R. Soc. Open Sci.
,
5
(
2
), p.
171962
.
12.
Shaw
,
L. A.
, and
Hopkins
,
J. B.
,
2016
, “
An Actively Controlled Shape-Morphing Compliant Microarchitectured Material
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021019
.
13.
Kotikian
,
A.
,
McMahan
,
C.
,
Davidson
,
E. C.
,
Muhammad
,
J. M.
,
Weeks
,
R. D.
,
Daraio
,
C.
, and
Lewis
,
J. A.
,
2019
, “
Untethered Soft Robotic Matter With Passive Control of Shape Morphing and Propulsion
,”
Sci. Rob.
,
4
(
33
), p.
7044
.
14.
Alfattani
,
R.
, and
Lusk
,
C.
,
2020
, “
Shape-Morphing Using Bistable Triangles With Dwell-Enhanced Stability
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051003
.
15.
Faber
,
J. A.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
.
16.
Lee
,
D.-Y.
,
Jung
,
G.-P.
,
Sin
,
M.-K.
,
Ahn
,
S.-H.
, and
Cho
,
K.-J.
,
2013
, “
Deformable Wheel Robot Based on Origami Structure
,”
2013 IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
5612
5617
.
17.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1
), pp.
131
137
.
18.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
,
R. J.
,
Akleman
,
E.
,
Gonen
,
O.
, and
Kung
,
H. -W.
,
2016
, “
Design Tools for Patterned Self-Folding Reconfigurable Structures Based on Programmable Active Laminates
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031015
.
19.
Liu
,
L.
,
Qiao
,
C.
,
An
,
H.
, and
Pasini
,
D.
,
2019
, “
Encoding Kirigami Bi-materials to Morph on Target in Response to Temperature
,”
Sci. Rep.
,
9
(
1
), pp.
1
14
.
20.
Cheng
,
Y.-C.
,
Lu
,
H.-C.
,
Lee
,
X.
,
Zeng
,
H.
, and
Priimagi
,
A.
,
2020
, “
Kirigami-Based Light-Induced Shape-Morphing and Locomotion
,”
Adv. Mater.
,
32
(
7
), p.
1906233
.
21.
Lentink
,
D.
,
Müller
,
U.
,
Stamhuis
,
E.
,
De Kat
,
R.
,
Van Gestel
,
W.
,
Veldhuis
,
L.
,
Henningsson
,
P.
,
Hedenström
,
A.
,
Videler
,
J. J.
, and
Van Leeuwen
,
J. L.
,
2007
, “
How Swifts Control Their Glide Performance With Morphing Wings
,”
Nature
,
446
(
7139
), pp.
1082
1085
.
22.
Vasista
,
S.
,
Tong
,
L.
, and
Wong
,
K.
,
2012
, “
Realization of Morphing Wings: A Multidisciplinary Challenge
,”
J. Air
,
49
(
1
), pp.
11
28
.
23.
Wang
,
H. V.
, and
Rosen
,
D. W.
,
2006
, “
An Automated Design Synthesis Method for Compliant Mechanisms With Application to Morphing Wings
,”
ASME 2006 IDETC/CIE
,
Philadelphia, PA
,
Sept. 10–13
,
ASME
, pp.
231
239
.
24.
Yokozeki
,
T.
,
Takeda
,
S.-I.
,
Ogasawara
,
T.
, and
Ishikawa
,
T.
,
2006
, “
Mechanical Properties of Corrugated Composites for Candidate Materials of Flexible Wing Structures
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
10
), pp.
1578
1586
.
25.
Chen
,
M.
,
Liu
,
J.
, and
Skelton
,
R. E.
,
2020
, “
Design and Control of Tensegrity Morphing Airfoils
,”
Mech. Res. Commun.
,
103
(
1
), p.
103480
.
26.
Thomson
,
M. W.
,
1999
, “
The Astromesh Deployable Reflector
,”
IEEE Antennas and Propagation Society International Symposium
,
Orlando, FL
,
July 11–16
, Vol.
3
,
IEEE
, pp.
1516
1519
.
27.
Stern
,
I.
,
2003
, “
Deployable Reflector Antenna With Tensegrity Support Architecture and Associated Methods
,”
Apr. 1
, U.S. Patent 6,542,132.
28.
Tan
,
L. T.
, and
Pellegrino
,
S.
,
2004
, “
Ultra Thin Deployable Reflector Antennas
,”
Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Palm Springs, CA
,
Apr. 19–22
.
29.
Kaplan
,
R.
, and
Schultz
,
J. L.
,
1977
, “
Deployable Reflector Structure
,”
Jun. 14
, U.S. Patent 4,030,102.
30.
Freeland
,
R.
,
Bilyeu
,
G.
, and
Veal
,
G.
,
1995
, “
Validation of a Unique Concept for a Low-Cost, Lightweight Space-Deployable Antenna Structure
,”
Acta Astronaut.
,
35
(
9
), pp.
565
572
.
31.
Funke
,
L. W.
, and
Schmiedeler
,
J. P.
,
2017
, “
Simultaneous Topological and Dimensional Synthesis of Planar Morphing Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021009
.
32.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Design of Planar, Shape-Changing Rigid-Body Mechanisms for Morphing Aircraft Wings
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041007
.
33.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Facilitating Deployable Mechanisms and Structures Via Developable Lamina Emergent Arrays
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031006
.
34.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.
35.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2017
, “
Design and Analysis of Outside-Deployed Lamina Emergent Joint (OD-LEJ)
,”
Mech. Mach. Theory
,
114
(
8
), pp.
111
124
.
36.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2018
, “
Design and Analysis of a Variable Stiffness Inside-Deployed Lamina Emergent Joint
,”
Mech. Mach. Theory
,
120
(
2
), pp.
166
177
.
37.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
A Family of Dual-Segment Compliant Joints Suitable for Use as Surrogate Folds
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092302
.
38.
Nelson
,
T. G.
,
Bruton
,
J. T.
,
Rieske
,
N. E.
,
Walton
,
M. P.
,
Fullwood
,
D. T.
, and
Howell
,
L. L.
,
2016
, “
Material Selection Shape Factors for Compliant Arrays in Bending
,”
Mater. Des.
,
110
(
22
), pp.
865
877
.
39.
Pehrson
,
N. A.
,
Bilancia
,
P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Load–Displacement Characterization in Three Degrees of Freedom for General LET Arrays
,”
ASME J. Mech. Des.
,
142
(
9
), p.
093301
.
40.
Chen
,
G.
, and
Howell
,
L. L.
,
2009
, “
Two General Solutions of Torsional Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
33
(
3
), pp.
268
274
.
41.
Quennouelle
,
C.
, and
Gosselin
,
C.
,
2008
, “
Stiffness Matrix of Compliant Parallel Mechanisms
,”
ASME 2008 IDETC/CIE
,
Brooklyn, NY
,
Aug. 3–6
, pp.
151
161
.
42.
Chen
,
G.-M.
, and
Howell
,
L. L.
,
2018
, “
Symmetric Equations for Evaluating Maximum Torsion Stress of Rectangular Beams in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
14
.
43.
Selig
,
M.
,
2020
, “
UIUC Airfoil Data Site
,”
Department of Aerospace Engineering, University of Illinois
, https://m-selig.ae.illinois.edu/ads/coord_database.html
44.
Chen
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062303
.
45.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2018
,
Materials Science and Engineering: An Introduction
,
Wiley
,
New York
.
You do not currently have access to this content.