Abstract

Cable-driven continuum robots exhibit excellent capabilities in the unstructured environment due to their inherent compliance and dexterity. To improve the reliability and load capacity of continuum robots, increasing the number of cables is often used in the control of continuum robots. However, the number of actuators will increase with the cables. To tackle this challenge, this work proposes a method for increasing the number of cables without increasing actuators in a continuum robot through parallel platforms. The parallel platforms are used to control all the cables in the continuum robot and can be separated from the continuum robot to enable the remote drive of a manipulation arm by using the cable-tube structure. The manipulation arm is composed of several independent bending modules in series, which can be configured freely according to the demand of degrees-of-freedom. Further, each bending module is controlled independently by a parallel platform, which can avoid the mutual interference between the cables of one bending module and another one, improve the position accuracy and simplify the control difficulty of the manipulation arm. To evaluate the proposed method, this work develops a prototype of six-cable-driven continuum robot controlled by 3RPS parallel platforms and presents some basic kinematic models to describe its function, and then an experimental work characterizing its performance. Experimental results illustrated the importance of increasing the number of cables, the rationality of kinematic models of the continuum robot, and the feasibility of controlling multiple cables by a parallel platform.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
. 10.1038/nature14543
2.
Wang
,
H.
,
Wang
,
C.
,
Chen
,
W.
,
Liang
,
X.
, and
Liu
,
Y.
,
2017
, “
Three-Dimensional Dynamics for Cable-Driven Soft Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
18
28
. 10.1109/TMECH.2016.2606547
3.
Dong
,
X.
,
Axinte
,
D.
,
Palmer
,
D.
,
Cobos
,
S.
,
Raffles
,
M.
,
Rabani
,
A.
, and
Kell
,
J.
,
2017
, “
Development of a Slender Continuum Robotic System for On-Wing Inspection/Repair of Gas Turbine Engines
,”
Rob. Comput.-Integr. Manuf.
,
44
, pp.
218
229
. 10.1016/j.rcim.2016.09.004
4.
Camarillo
,
D. B.
,
Carlson
,
C. R.
, and
Salisbury
,
J. K.
,
2009
, “
Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
798
808
. 10.1109/TRO.2009.2022426
5.
Li
,
Z.
,
Wu
,
L.
,
Ren
,
H.
, and
Yu
,
H.
,
2017
, “
Kinematic Comparison of Surgical Tendon-Driven Manipulators and Concentric Tube Manipulators
,”
Mech. Mach. Theory
,
107
, pp.
148
165
. 10.1016/j.mechmachtheory.2016.09.018
6.
Yip
,
M. C.
,
Sganga
,
J. A.
, and
Camarillo
,
D. B.
,
2017
, “
Autonomous Control of Continuum Robot Manipulators for Complex Cardiac Ablation Tasks
,”
J. Med. Rob. Res.
,
2
(
1
), pp.
1
13
. 10.24218/jrmer.2017.21
7.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1262
1273
. 10.1109/TRO.2008.2002311
8.
Trivedi
,
D.
, and
Rahn
,
C. D.
,
2014
, “
Model-Based Shape Estimation for Soft Robotic Manipulators: the Planar Case
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021005
. 10.1115/1.4026338
9.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
. 10.1155/2008/520417
10.
Yuan
,
H.
,
Zhou
,
L.
, and
Xu
,
W.
,
2019
, “
A Comprehensive Static Model of Cable-Driven Multi-Section Continuum Robots Considering Friction Effect
,”
Mech. Mach. Theory
,
135
, pp.
130
149
. 10.1016/j.mechmachtheory.2019.02.005
11.
Li
,
Z.
, and
Du
,
R.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), pp.
1
11
.
12.
Renda
,
F.
,
Giorelli
,
M.
,
Calisti
,
M.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2014
, “
Dynamic Model of a Multibending Soft Robot Arm Driven by Cables
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1109
1122
. 10.1109/TRO.2014.2325992
13.
Li
,
H.
,
Yao
,
J.
,
Zhou
,
P.
,
Chen
,
X.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2019
, “
High-Load Soft Grippers Based on Bionic Winding Effect
,”
Soft Rob.
,
6
(
2
), pp.
276
288
. 10.1089/soro.2018.0024
14.
Webster
,
R. J.
,
Romano
,
J. M.
, and
Cowan
,
N. J.
,
2009
, “
Mechanics of Precurved-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
67
78
. 10.1109/TRO.2008.2006868
15.
Kim
,
Y.
,
Cheng
,
S. S.
, and
Desai
,
J. P.
,
2015
, “
Towards the Development of a Spring-Based Continuum Robot for Neurosurgery
,”
Proc. SPIE
,
9415
, pp.
1
6
.
16.
Li
,
M.
,
Kang
,
R.
,
Geng
,
S.
, and
Guglielmino
,
E.
,
2018
, “
Design and Control of a Tendon-Driven Continuum Robot
,”
Trans. Inst. Meas. Control
,
40
(
11
), pp.
3263
3272
. 10.1177/0142331216685607
17.
Tonapi
,
M. M.
,
Godage
,
I. S.
,
Vijaykumar
,
A.
, and
Walker
,
I. D.
,
2015
, “
A Novel Continuum Robotic Cable Aimed at Applications in Space
,”
Adv. Rob.
,
29
(
13
), pp.
861
875
. 10.1080/01691864.2015.1036772
18.
Burgnerkahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
19.
Suh
,
J.
,
Kim
,
K.
,
Jeong
,
J.
, and
Lee
,
J.
,
2015
, “
Design Considerations for a Hyper-Redundant Pulleyless Rolling Joint with Elastic Fixtures
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
2841
2852
. 10.1109/TMECH.2015.2389228
20.
Nahar
,
D.
,
Yanik
,
P.
, and
Walker
,
I. D.
,
2017
, “
Robot Tendrils: Long, Thin Continuum Robots for Inspection in Space Operations
,”
IEEE Aerospace Conference
,
Big Sky, MT
,
Mar 4–11
, pp.
1
8
.
21.
Mehling
,
J. S.
,
Diftler
,
M. A.
,
Chu
,
M. W.
, and
Valvo
,
M. C.
,
2006
, “
A Minimally Invasive Tendril Robot for In-Space Inspection
,”
IEEE International Conference on Biomedical Robotics and Biomechatronics
,
Pisa, Italy
,
Feb. 20–22
, pp.
690
695
.
22.
Qi
,
F.
,
Ju
,
F.
,
Bai
,
D.
,
Wang
,
Y.
, and
Chen
,
B.
,
2019
, “
Kinematic Analysis and Navigation Method of a Cable-Driven Continuum Robot Used for Minimally Invasive Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
15
(
4
), pp.
1
12
.
23.
Yang
,
X.
,
Huang
,
T.
,
Hu
,
H.
,
Yu
,
S.
,
Zhang
,
H.
,
Zhou
,
X.
,
Carriero
,
A.
,
Yue
,
G.
, and
Su
,
H.
,
2019
, “
Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4547
4554
. 10.1109/LRA.2019.2935351
24.
Oliverbutler
,
K.
,
Till
,
J.
, and
Rucker
,
C.
,
2019
, “
Continuum Robot Stiffness Under External Loads and Prescribed Tendon Displacements
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
403
419
. 10.1109/TRO.2018.2885923
25.
Dong
,
X.
,
Raffles
,
M.
,
Cobos-Guzman
,
S.
,
Axinte
,
D.
, and
Kell
,
J.
,
2016
, “
A Novel Continuum Robot Using Twin-Pivot Compliant Joints: Design, Modeling, and Validation
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021010
. 10.1115/1.4031340
26.
Gerboni
,
G.
,
Henselmans
,
P. W.
,
Arkenbout
,
E. A.
,
van Furth
,
W. R.
, and
Breedveld
,
P.
,
2015
, “
HelixFlex: Bioinspired Maneuverable Instrument for Skull Base Surgery
,”
Bioinspiration Biomimetics
,
10
(
6
), pp.
1
17
. 10.1088/1748-3190/10/6/066013
27.
Xu
,
K.
,
Zhao
,
J.
,
Qiu
,
D.
, and
Wang
,
Y.
,
2014
, “
A Pilot Study of a Continuum Shoulder Exoskeleton for Anatomy Adaptive Assistances
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041011
. 10.1115/1.4027760
28.
Zhang
,
Q.
,
Zhou
,
L.
, and
Wang
,
Z.
,
2017
, “
Design and Implementation of Wormlike Creeping Mobile Robot for EAST Remote Maintenance System
,”
Fusion Eng. Des.
,
118
, pp.
81
97
. 10.1016/j.fusengdes.2017.03.054
29.
Qi
,
P.
,
Qiu
,
C.
,
Liu
,
H.
,
Dai
,
J. S.
,
Seneviratne
,
L. D.
, and
Althoefer
,
K.
,
2015
, “
A Novel Continuum Manipulator Design Using Serially Connected Double-Layer Planar Springs
,”
IEEE/ASME Trans. Mechatronics
,
21
(
3
), pp.
1281
1292
. 10.1109/TMECH.2015.2498738
30.
Qi
,
F.
,
Ju
,
F.
,
Bai
,
D. M.
, and
Chen
,
B.
,
2018
, “
Kinematics Optimization and Static Analysis of a Modular Continuum Robot Used for Minimally Invasive Surgery
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
232
(
2
), pp.
135
148
.
31.
He
,
B.
,
Xu
,
S.
, and
Wang
,
Z.
,
2018
, “
Research on Stiffness of Multibackbone Continuum Robot Based on Screw Theory and Euler-Bernoulli Beam
,”
Math. Prob. Eng.
,
2018
, pp.
1
16
.
32.
Amouri
,
A.
,
Zaatri
,
A.
, and
Mahfoudi
,
C.
,
2018
, “
Dynamic Modeling of a Class of Continuum Manipulators in Fixed Orientation
,”
J. Intell. Rob. Syst.
,
91
(
3
), pp.
413
424
. 10.1007/s10846-017-0734-z
33.
He
,
G.
,
Fan
,
Y.
,
Su
,
T.
,
Zhao
,
L.
, and
Zhao
,
Q.
,
2020
, “
Variable Impedance Control of Cable Actuated Continuum Manipulators
,”
Int. J. Control Autom. Syst.
,
18
(
7
), pp.
1
14
.
34.
Tang
,
L.
,
Wang
,
J.
,
Zheng
,
Y.
,
Gu
,
G.
,
Zhu
,
L.
, and
Zhu
,
X.
,
2017
, “
Design of a Cable-Driven Hyper-Redundant Robot with Experimental Validation
,”
Int. J. Adv. Rob. Syst.
,
14
(
5
), pp.
1
12
. 10.1177/1729881417734458
35.
Alambeigi
,
F.
,
Wang
,
Y.
,
Sefati
,
S.
,
Gao
,
C.
,
Murphy
,
R. J.
,
Iordachita
,
I.
,
Taylor
,
R. H.
,
Khanuja
,
H.
, and
Armand
,
M.
,
2017
, “
A Curved-Drilling Approach in Core Decompression of the Femoral Head Osteonecrosis Using a Continuum Manipulator
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1480
1487
. 10.1109/LRA.2017.2668469
36.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer-Verlag London Limited
,
London
, pp.
39
58
.
37.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
15
28
. 10.1016/S0094-114X(00)00032-X
38.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
. 10.1177/0278364910368147
39.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2017
, “
Optimum Design of Multi-Degree-of-Freedom Closed-Loop Mechanisms and Parallel Manipulators for a Prescribed Workspace Using Monte Carlo Method
,”
Mech. Mach. Theory
,
118
, pp.
115
138
. 10.1016/j.mechmachtheory.2017.07.021
40.
Manti
,
M.
,
Cacucciolo
,
V.
, and
Cianchetti
,
M.
,
2016
, “
Stiffening in Soft Robotics: A Review of the State of the Art
,”
IEEE Rob. Autom. Mag.
,
23
(
3
), pp.
93
106
. 10.1109/MRA.2016.2582718
You do not currently have access to this content.