Abstract

In this study, the mobility of the threefold-symmetric Bricard linkage and its network are analyzed using screw theory. First, the screw motion equation of the linkage is derived. By applying the modified Grübler–Kutzbach criterion, we deduce that the degree of freedom (DOF) of the linkage is equal to 1. Then, we analyze the mechanical network constructed of threefold-symmetric Bricard linkages and provide its topological constraint graph. Using graph theory and screw theory, the constraint matrix of the mechanical network is obtained. Then, we solve the matrix rank via linear column transformation. Results show that the DOF of the mechanical network is equal to 1. The mobility analysis method of the mechanical network proposed in this study facilitates the solution of the constraint matrix rank and can be used as a reference for other mechanical networks constructed of single-loop linkages.

References

1.
Bricard
,
R.
,
1897
, “
Mémoire sur la théorie de l’octaèdre articulé
,”
Journal de mathématiques pures et appliquées
,
Liouville
,
3
, pp.
113
148
.
2.
Bricard
,
R.
,
1927
,
Leçons de cinématique
, Vol.
2
,
Gauthier-Villars
,
Paris
, pp.
7
12
.
3.
Luo
,
Y.
,
Yu
,
Y.
, and
Liu
,
J.
,
2008
, “
A Retractable Structure Based on Bricard Linkages and Rotating Rings of Tetrahedra
,”
Int. J. Solids. Struct.
,
45
(
2
), pp.
620
630
. 10.1016/j.ijsolstr.2007.08.018
4.
Racila
,
L.
,
2009
, “
One DOF Parallel Manipulator Based on Bricard Rectangular Mechanism
,”
SYROM
,
Brasov, Romania
,
Oct. 12–15
,
Springer
,
Dordrecht
, pp.
379
386
. 10.1007/978-90-481-3522-6_30
5.
Racila
,
L.
, and
Dahan
,
M.
,
2007
, “
Bricard Mechanism Used as Translator
,”
12th World Congress IFToMM
,
Besançon, France
,
June 18–21
, pp.
1
5
.
6.
Shang
,
H.
,
Wei
,
D.
,
Kang
,
R.
, and
Chen
,
Y.
,
2017
, “
A Deployable Robot Based on the Bricard Linkage
,”
Mechanism and Machine Science: Proceedings of ASIAN MMS 2016 & CCMMS 2016
,
Guangzhou, China
,
Dec. 15–17
,
X.
Zhang
,
N.
Wang
, and
Y.
Huang
, eds.,
Springer
,
Singapore
, pp.
737
747
.
7.
Shang
,
H.
,
Wei
,
D.
,
Kang
,
R.
, and
Chen
,
Y.
,
2018
, “
Gait Analysis and Control of a Deployable Robot
,”
Mech. Mach. Theory
,
120
, pp.
107
119
. 10.1016/j.mechmachtheory.2017.09.020
8.
Gan
,
W.
, and
Pellegrino
,
S.
,
2003
, “
Closed-loop Deployable Structures
,”
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Norfolk, VA,
,
Apr.
7–10
, Paper No. AIAA 2003-1450. 10.2514/6.2003-1450
9.
Chen
,
Y.
, and
You
,
Z.
,
2004
, “
Deployable Structures Based on the Bricard Linkages
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference
,
Palm Springs, CA
,
Apr.
19–22
, Paper No. AIAA 2004-1604. 10.2514/6.2004-1604
10.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids. Struct.
,
42
(
8
), pp.
2287
2301
. 10.1016/j.ijsolstr.2004.09.014
11.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2015
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
. 10.1115/1.4032119
12.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Polyhedron Mechanisms Constructed by Connecting Spatial Single-Loop Linkages of Different Types and/or in Different Sizes Using S Joints
,”
Mech. Mach. Theory
,
124
, pp.
211
225
. 10.1016/j.mechmachtheory.2018.03.002
13.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8R or 10R Single-Loop Linkages Using S Joints
,”
Mech. Mach. Theory
,
120
, pp.
178
191
. 10.1016/j.mechmachtheory.2017.09.017
14.
Huang
,
Z.
,
Liu
,
J.
, and
Li
,
Q.
,
2008
, “A Unified Methodology for Mobility Analysis Based on Screw Theory,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
, and
J.
Xi
, eds.,
Springer
,
London
, pp.
49
78
.
15.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
. 10.1115/1.1901708
16.
Huang
,
Z.
, and
Xia
,
P.
,
2006
, “
The Mobility Analyses of Some Classical Mechanism and Recent Parallel Robot
,”
Proceedings of IDETC/CIE 2006
,
Philadelphia, PA, Sept. 10–13, Paper No. DETC2006-99109
.
17.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
131
145
. 10.1177/027836402760475342
18.
Baker
,
J. E.
,
2014
, “
A Variant Double-Spherical Linkage and its Reciprocal Screw
,”
Mech. Mach. Theory
,
74
, pp.
31
41
. 10.1016/j.mechmachtheory.2013.11.006
19.
Baker
,
J. E.
,
2012
, “
The six-Revolute Hybrids of Four-Revolute Loops and Their Single Reciprocal Screws
,”
Mech. Mach. Theory
,
53
, pp.
128
144
. 10.1016/j.mechmachtheory.2012.02.011
20.
Huang
,
H.
,
Deng
,
Z.
,
Qi
,
X.
, and
Li
,
B.
,
2013
, “
Virtual Chain Approach for Mobility Analysis of Multiloop Deployable Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111002
. 10.1115/1.4025383
21.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
. 10.1115/1.4001730
22.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
. 10.1115/1.4027638
23.
Dai
,
J.
,
Li
,
D.
,
Zhang
,
Q.
, and
Jin
,
G.
,
2004
, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
,
39
(
4
), pp.
445
458
. 10.1016/j.mechmachtheory.2003.12.004
24.
Wei
,
G.
, and
Dai
,
J.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
. 10.1115/1.4025821
25.
Nagaraj
,
B. P.
,
Pandiyan
,
R.
, and
Ashitava
,
G.
,
2009
, “
Kinematics of Pantograph Masts
,”
Mech. Mach. Theory
,
44
(
4
), pp.
822
834
. 10.1016/j.mechmachtheory.2008.04.004
26.
Song
,
X.
,
Guo
,
H.
,
Li
,
B.
,
Liu
,
R.
, and
Deng
,
Z.
,
2017
, “
Large Deployable Network Constructed by Altmann Linkages
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
2
), pp.
341
355
. 10.1177/0954406215626955
27.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
. 10.1016/j.mechmachtheory.2016.10.019
You do not currently have access to this content.