Abstract

Recently, the truss antennas with deployable tetrahedron unit mechanisms have been successfully applied in orbit, owing to the advantages of large calibers, high accuracy, and large folding ratios. As multiloop coupled mechanisms, deployable tetrahedral mechanisms have multiple different output links, whose supporting limbs connecting output links and the base are mutually coupled. These mechanisms are also called the passive-input overconstrained mechanisms because their passive torsion springs are used as drivers and because the number of the drivers contained is more than the degrees of freedom (DOFs). In this work, a method based on the equivalent concept of first link-removing and then restoring is proposed for the DOF analysis of the multiloop coupled deployable tetrahedral mechanisms. With one coupled chain removed, the equivalent serial chains between the coupled components and the base are established in the remainder of the mechanisms. Then, the coupled chain removed is restored and the equivalent of the multiloop coupled mechanisms is obtained. The Lagrange method is used to establish the dynamic equation of the passive-input overconstrained mechanisms; the influence of the stiffness and number of torsion springs on the unfolding motion is examined.

References

1.
Wohlhart
,
K.
,
2008
, “
New Polyhedral Star Linkages
,”
Proceedings of the 10th International Conference on the Theory of Machines and Mechanisms
,
Liberec, Czech
,
Sep. 2–4
, pp.
1
10
.
2.
Gosselin
,
C. M.
, and
Gagnon-Lachance
,
D.
,
2006
, “
Deployable Polyhedral Mechanisms Based on Polygonal One-Degree-of-Freedom Faces
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
1011
1018
. 10.1243/09544062JMES174
3.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
. 10.1115/1.4025472
4.
Agrawal
,
S. K.
,
Kumar
,
S.
, and
Yim
,
M.
,
2002
, “
Polyhedral Single Degree-of-Freedom Expanding Structures: Design and Prototypes
,”
ASME J. Mech. Des.
,
124
(
9
), pp.
473
478
. 10.1115/1.1480413
5.
Herr
,
R. W.
, and
Horner
,
G. C.
,
1980
, “
Deployment Test of a 36-Element Tetrahedral Truss Module
,” Vought Corp., Dallas, TX, 2nd Annual Technical Review, NASA-CP-2168-V-1.
6.
Zhang
,
W.
, and
Lin
,
Y. G.
,
2015
, “
Application Preliminary Evaluation of HJ-1-C SAR Satellite of S Band
,”
9th International Symposium on Multispectral Image Processing and Pattern Recognition: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, MIPPR 2015
,
Hubei, China
,
Oct. 31–Nov. 1
.
7.
Xu
,
Y.
, and
Guan
,
F. L.
,
2013
, “
Structure–Electronic Synthesis Design of Deployable Truss Antenna
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
259
267
. 10.1016/j.ast.2012.05.004
8.
Xu
,
Y. D.
,
Chen
,
L. L.
,
Liu
,
W. L.
,
Yao
,
J. T.
,
Zhu
,
J. L.
, and
Zhao
,
Y. S.
,
2018
, “
Type Synthesis of the Deployable Mechanisms for the Truss Antenna Using the Method of Adding Constraint Chains
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041002
. 10.1115/1.4039341
9.
Xu
,
Y. D.
,
Guo
,
J. W.
,
Guo
,
L. Y.
,
Liu
,
W. L.
,
Yao
,
J. T.
, and
Zhao
,
Y. S.
,
2019
, “
Design and Analysis of a Deployable Truss Antenna Mechanism Based on a 3UU-3URU Unit
,”
Chin. J. Aeronaut.
10.1016/j.cja.2018.12.008
10.
Qi
,
X. Z.
,
Deng
,
Z. Q.
,
Li
,
B.
,
Liu
,
R. Q.
, and
Guo
,
H. W.
,
2013
, “
Design and Optimization of Large Deployable Mechanism Constructed by Myard Linkages
,”
CEAS Space J.
,
5
(
3–4
), pp.
147
155
. 10.1007/s12567-013-0036-7
11.
Cui
,
J.
,
Huang
,
H. L.
,
Li
,
B.
, and
Deng
,
Z. Q.
,
2012
, “
A Novel Surface Deployable Antenna Structure Based on Special Form of Bricard Linkages
,”
2nd ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2012
,
Tianjin, China
,
July 9–11
, pp.
783
792
.
12.
Deng
,
Z. Q.
,
Huang
,
H. L.
,
Li
,
B.
, and
Liu
,
R. Q.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
1
), pp.
1
12
.
13.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8r or 10r Single-Loop Linkages Using s Joints
,”
Mech. Mach. Theory
,
120
(
2
), pp.
178
191
. 10.1016/j.mechmachtheory.2017.09.017
14.
Xiu
,
H.
,
Wang
,
K.
,
Xu
,
T.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Synthesis and Analysis of Fulleroid-Like Deployable Archimedean Mechanisms Based on an Overconstrained Eight-Bar Linkage
,”
Mech. Mach. Theory
,
137
(
4
), pp.
476
508
. 10.1016/j.mechmachtheory.2019.03.004
15.
Somov
,
P. I.
,
1887
, “
On the Degree of Freedom of Motion of Kinematic Chains
,”
J. Phys. Chem. Soc. Russ.
,
19
(
9
), pp.
443
477
.
16.
Huang
,
Z.
,
Liu
,
J. F.
, and
Zeng
,
D. X.
,
2009
, “
A General Methodology for Mobility Analysis of Mechanisms Based on Constraint Wrench Theory
,”
Sci. China, Ser. E: Technol. Sci.
,
52
(
5
), pp.
1337
1347
. 10.1007/s11431-008-0219-1
17.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
. 10.1115/1.1901708
18.
Gogu
,
G.
,
2005
, “
Mobility and Spatiality of Parallel Robots Revisited Via Theory of Linear Transformations
,”
Eur. J. Mech. A-Solid
,
24
(
4
), pp.
690
711
. 10.1016/j.euromechsol.2005.02.004
19.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
J.
,
Rodriguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
,
2006
, “
A More General Mobility Criterion for Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
207
219
. 10.1115/1.2118687
20.
Zhang
,
Y. T.
,
Lu
,
W. J.
,
Mu
,
D. J.
,
Yang
,
Y.
,
Zhang
,
L.
, and
Zeng
,
D.
,
2013
, “
A Novel Mobility Formula for Parallel Mechanisms Expressed With Mobility of General Link-Group
,”
Chin. J. Mech. Eng.
,
26
(
6
), pp.
1082
1090
. 10.3901/CJME.2013.06.1082
21.
Li
,
Q. C.
,
Chai
,
X. X.
, and
Xiang
,
J. N.
,
2016
, “
Mobility Analysis of Limited-DOF Parallel Mechanisms in Framework of Geometric Algebra
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041005
.
22.
Zhang
,
Y. T.
,
Li
,
Y. W.
, and
Wang
,
L. Y.
,
2011
, “
A new Formula of Mechanism Mobility Based on Virtual Constraint Loop
,”
Sci. China Technol. Sci.
,
54
(
10
), pp.
2768
2775
. 10.1007/s11431-011-4499-5
23.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
. 10.1016/j.mechmachtheory.2004.12.014
24.
Dai
,
J. S.
,
Li
,
D. L.
,
Zhang
,
Q. X.
, and
Jin
,
G. G.
,
2004
, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Wrench System Analysis
,”
Mech. Mach. Theory
,
39
, pp.
445
458
. 10.1016/j.mechmachtheory.2003.12.004
25.
Ding
,
X. L.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2011
, “
Topology and Kinematic Analysis of Color-Changing Ball
,”
Mech. Mach. Theory
,
46
, pp.
67
81
. 10.1016/j.mechmachtheory.2010.08.010
26.
Wei
,
G. W.
,
Ding
,
X. L.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch ball and its Variant
,”
ASME J. Mech. Rob.
,
2
, p.
031010
.
27.
Laliberté
,
T.
, and
Gosselin
,
C.
,
2013
, “
Construction, Mobility Analysis and Synthesis of Polyhedra With Articulated Faces
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011007
.
28.
Cao
,
W. A.
,
Ding
,
H. F.
,
Chen
,
Z. M.
, and
Zhao
,
S. P.
,
2016
, “
Mobility Analysis and Structural Synthesis of a Class of Spatial Mechanisms With Coupling Chains
,”
Robotica
,
34
(
11
), pp.
2467
2485
. 10.1017/S0263574715000132
29.
Ding
,
H. F.
,
Cao
,
W. A.
,
Chen
,
Z. M.
, and
Kecskeméthy
,
A.
,
2015
, “
Structural Synthesis of Two-Layer and Two-Loop Spatial Mechanisms With Coupling Chains
,”
Mech. Mach. Theory
,
92
(
10
), pp.
289
313
. 10.1016/j.mechmachtheory.2015.05.015
30.
Sun
,
Y. T.
,
Wang
,
S. M.
,
Li
,
J. F.
, and
Zhi
,
C. J.
,
2013
, “
Mobility Analysis of the Deployable Structure of SLE Based on Wrench Theory
,”
Chin. J. Mech. Eng.
,
26
(
4
), pp.
793
800
. 10.3901/CJME.2013.04.793
31.
Zhong
,
Y.
,
2007
, “
Motion Structures Extend Their Reach
,”
Mater. Today
,
10
(
12
), pp.
52
57
. 10.1016/S1369-7021(07)70308-5
32.
Wei
,
G. W.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
. 10.1115/1.4027638
33.
Baker
,
B.
,
2005
, “
Using an Expandable Toy in Discussing Rotational Motion
,”
Phys. Teach.
,
43
(
4
), p.
247
10.1119/1.1888088
34.
Xu
,
Y. D.
,
Yao
,
J. T.
, and
Zhao
,
Y. S.
,
2015
, “
Internal Forces Analysis of the Active Overconstrained Parallel Manipulators
,”
Int. J. Robot. Autom.
,
30
(
5
), pp.
511
518
.
35.
Liu
,
W. L.
,
Xu
,
Y. D.
,
Yao
,
J. T.
, and
Zhao
,
Y. S.
,
2017
, “
Methods for Force Analysis of Overconstrained Parallel 411 Mechanisms: A Review
,”
Chin. J. Mech. Eng.
,
30
(
6
), pp.
1460
1472
. 10.1007/s10033-017-0199-9
36.
Xu
,
Y. D.
,
Liu
,
W. L.
,
Yao
,
J. T.
, and
Zhao
,
Y. S.
,
2015
, “
A Method for Force Analysis of the Overconstrained Lower Mobility Parallel Mechanism
,”
Mech. Mach. Theory
,
88
(
6
), pp.
31
48
. 10.1016/j.mechmachtheory.2015.01.004
37.
Wu
,
J.
,
Chen
,
X. L.
, and
Wang
,
L. P.
,
2014
, “
Dynamic Load-Carrying Capacity of a Novel Redundantly Actuated Parallel Conveyor
,”
Nonlinear Dyn.
,
78
(
1
), pp.
241
250
. 10.1007/s11071-014-1436-8
38.
Sun
,
T.
,
Lian
,
B.
, and
Song
,
Y.
,
2016
, “
Stiffness Analysis of a 2-D of Over-Constrained RPM With an Articulated Traveling Platform
,”
Mech. Mach. Theory
,
96
(
2
), pp.
165
178
. 10.1016/j.mechmachtheory.2015.09.008
39.
Yang
,
C.
,
Li
,
Q. C.
,
Chen
,
Q. H.
, and
Xu
,
L. M.
,
2018
, “
Elastostatic Stiffness Modeling of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
122
(
4
), pp.
58
74
. 10.1016/j.mechmachtheory.2017.12.011
40.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
You do not currently have access to this content.