Abstract

The design, modeling, simulation, and testing of a landing gear system that enables a UAV to perch on an object or surface is presented here. The working principle of the landing gear is inspired by the anatomy of birds that grasp and perch as tendons in their legs and feet are tensioned. In a similar fashion, as the UAV sets down on a structure, its weight tensions a cable which actuates opposing, flexible, multi-segment feet to enclose the target. To analyze the grasping capability of the design, a hybrid empirical–computational model is developed that can be used to simulate the kinematics of the system as it grasps objects of various cross-sectional shapes and sizes. The model relates the curvature of the feet to the displacement and tension of the cable tendon. These quantities are then related to the weight of the UAV through the leg geometry. It also evaluates enclosure and calculates contact forces to quantitatively characterize the grasp. Results demonstrate how the model can be used by designers to determine how a UAV can perch upon a structure of a given shape and size. If perched, the minimum weight required to maintain its position is calculated. A prototype system was fabricated, analyzed, and tested on a radio-controlled hexacopter. Experiments show that the landing gear enables the hexacopter to land, perch, and takeoff from a variety of objects. Finally, we begin to investigate the scalability of the concept with a smaller, lighter design.

References

1.
Nadan
,
P. M.
, and
Lee
,
C. L.
,
2018
, “
Computational Design of a Bird-Inspired Perching Landing Gear Mechanism
,”
ASME International Mechanical Engineering Congress & Exposition (IMECE)
,
Pittsburgh, PA
,
Nov. 9–15
, ASME Paper No. IMECE2018-86615.
2.
Tieu
,
M.
,
Michael
,
D. M.
,
Pflueger
,
J. B.
,
Sethi
,
M. S.
,
Shimazu
,
K. N.
,
Anthony
,
T. M.
, and
Lee
,
C. L.
,
2016
, “
Demonstrations of Bio-Inspired Perching Landing Gear for UAV’s
,”
Proceedings of the SPIE 9797 Bioinspiration, Biomimetics, and Bioreplication
,
Las Vegas, NV
,
Mar. 20–24
, Paper No. 9797X.
3.
Kovac
,
M.
,
2016
, “
Learning From Nature How to Land Aerial Robots
,”
Science
,
352
(
6288
), pp.
895
896
. 10.1126/science.aaf6605
4.
Robertson
,
D. K.
, and
Reich
,
G. W.
,
2013
, “
Design and Perching Experiments of Bird-Like Remote Controlled Planes
,”
54th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, AIAA Paper No. AIAA 2013-1788.
5.
Nagendran
,
A.
,
Crowther
,
W.
, and
Richardson
,
R. C.
,
2012
, “
Biologically Inspired Legs for UAV Perched Landing
,”
IEEE Aerosp. Electron. Syst. Mag.
,
27
(
2
), pp.
4
13
. 10.1109/MAES.2012.6163608
6.
Paranjape
,
A. A.
,
Kim
,
J.
,
Gandhi
,
N.
, and
Chung
,
S.-J.
,
2011
, “
Experimental Demonstration of Perching by an Articulated Wing MAV
,”
AIAA Guidance, Navigation, and Control Conference
,
Portland, OR
,
Aug. 8–11
, AIAA Paper No. AIAA 2011-6403.
7.
Cory
,
R.
, and
Tendrake
,
R.
,
2008
, “
Experiments in Fixed-Wing UAV Perching
,”
AIAA Guidance, Navigation, and Control Conference
,
Honolulu, HI
,
Aug. 18–21
, AIAA Paper No. AIAA 2008-7256.
8.
Culler
,
E. S.
,
Thomas
,
G. C.
, and
Lee
,
C. L.
,
2012
, “
A Perching Landing Gear for a Quadcopter
,”
53rd AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, AIAA Paper No. AIAA 2012-1722.
9.
Ali Erbil
,
M.
,
Prior
,
S. D.
, and
Keane
,
A. J.
,
2013
, “
Design Optimisation of a Reconfigurable Perching Element for Vertical Take-Off and Landing Unmanned Aerial Vehicles
,”
Int. J. Micro Air Veh.
,
5
(
3
), pp.
207
228
. 10.1260/1756-8293.5.3.207
10.
Chi
,
W.
,
Low
,
K. H.
,
Hoon
,
K. H.
, and
Tang
,
J.
,
2014
, “
An Optimized Perching Mechanism for Autonomous Perching With a Quadrotor
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
3109
3115
.
11.
Jiang
,
H.
,
Pope
,
M. T.
,
Hawkes
,
E. W.
,
Christensen
,
D. L.
,
Estrada
,
M. A.
,
Parlier
,
A.
,
Tran
,
R.
, and
Cutkosky
,
M. R.
,
2014
, “
Modeling the Dynamics of Perching With Opposed-Grip Mechanisms
,”
International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
3102
3108
.
12.
Burroughs
,
M. L.
,
Beauwen Freckleton
,
K.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2015
, “
A Sarrus-Based Passive Mechanism for Rotorcraft Perching
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011010
. 10.1115/1.4030672
13.
Quinn
,
T. H.
, and
Baumel
,
J. J.
,
1990
, “
The Digital Tendon Locking Mechanism of the Avian Foot (Aves)
,”
Zoomorphology
,
109
(
5
), pp.
281
293
. 10.1007/BF00312195
14.
Backus
,
S. B.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2014
, “
Design of Hands for Aerial Manipulation Actuator Number and Routing for Grasping and Perching
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
34
40
.
15.
Backus
,
S. B.
,
Sustaita
,
D.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2015
, “
Mechanical Analysis of Avian Feet: Multiarticular Muscles in Grasping and Perching
,”
Royal Soc. Open Sci.
,
2
(
2
), Article ID 140350. 10.1098/rsos.140350
16.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Kallman
,
J. C.
,
Bareiss
,
D. F.
,
Dunlap
,
D. J.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2013
, “
An Avian-Inspired Passive Mechanism for Quadrotor Perching
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
506
517
. 10.1109/TMECH.2012.2211081
17.
Xie
,
P.
, and
Ma
,
O.
,
2013
, “
Grasping Analysis of a Bio-Inspired UAV/MAV Perching Mechanism
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
San Diego, CA
,
Nov. 15–21
, ASME Paper No. IMECE2013-66526.
18.
Xie
,
P.
,
Ma
,
O.
,
Zhang
,
L.
, and
Zhao
,
Z.
,
2015
, “
A Bio-Inspired UAV Leg-Foot Mechanism for Landing, Grasping, and Perching Tasks
,”
AIAA Atmospheric Flight Mechanics Conference
,
Kissimmee, FL
,
Jan. 5–9
, AIAA Paper No. AIAA 2015-1689.
19.
Gardner
,
J. F.
,
2001
,
Simulations of Machines Using MATLAB and SIMULINK
,
Brooks/Cole
,
Pacific Grove, CA
, Chap. 2–3.
You do not currently have access to this content.