Continuous-bodied “trunk and tentacle” robots have increased self-adaptability and obstacle avoidance capabilities, compared with traditional, discrete-jointed, robots with large rigid links. In particular, continuous-bodied robots have obvious advantages in grasping objects across a wide range of external dimensions. Not only can they grasp objects using end effectors like traditional robots, but their bodies can also be regarded as a gripping device, and large objects with respect to the robot’s scale can be captured by the entire structure of the robots themselves. Existing trunk-like robots have distributed multidrive actuation and are often manufactured using soft materials, which leads to a complex actuator system that also limits their potential applications in dangerous and extreme environments. This paper introduces a new type of elephant’s trunk robot with very few driving constraints. The robot consists of a series of novel underactuated linkage units. With a single-motor drive, the robot can achieve stable grasping of objects of different shapes and sizes. The proposed robot simplifies the requirements of the sensing and control systems during the operation process and has the advantage of accomplishing the capture task without determining the exact shape and position of the target object. It is especially suitable for operations such as non-cooperative target capture in extremely dangerous environments, including those in outer space. Based on theoretical analysis and model design, a trunk robot prototype was developed, and a comprehensive experimental study of the bending/extension and grasping operation functions was conducted to verify the validity of the proposed robot design.

References

1.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
2
), pp.
99
117
.
2.
Axinte
,
D.
,
Dong
,
X.
,
Palmer
,
D.
,
Rushworth
,
A.
,
Guzman
,
S. C.
,
Olarra
,
A.
,
Arizaga
,
I.
,
Gomez-Acedo
,
E.
,
Txoperena
,
K.
,
Pfeiffer
,
K.
,
Messmer
,
F.
,
Gruhler
,
M.
, and
Kell
,
J.
,
2018
, “
MiRoR—Miniaturized Robotic Systems for Holistic In-Situ Repair and Maintenance Works in Restrained and Hazardous Environments
,”
IEEE-ASME Trans. Mech.
,
23
(
2
), pp.
978
981
.
3.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1261
1280
.
4.
Dong
,
X.
,
Axinte
,
D.
,
Palmer
,
D.
,
Palmer
,
D.
,
Cobos
,
S.
,
Raffles
,
M.
,
Rabani
,
A.
, and
Kell
,
J.
,
2017
, “
Development of a Slender Continuum Robotic System for On-Wing Inspection/Repair of Gas Turbine Engines
,”
Robot. Cim-Int. Manuf.,
44
(
C
), pp.
218
229
.
5.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.
6.
Hirose
,
S.
, and
Yamada
,
H.
,
2009
, “
Snake-like Robots [Tutorial]
,”
IEEE Robot. Autom. Mag.
,
16
(
1
), pp.
88
98
.
7.
Walker
,
I. D.
,
Choset
,
H.
, and
Chirikjian
,
G.
,
2016
, “
Snake-Like and Continuum Robots
,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Heidelberg
, pp.
481
498
.
8.
Lipson
,
H.
,
2014
, “
Challenges and Opportunities for the Design, Simulation, and Fabrication of Soft Robots
,”
Soft Robot.
,
1
(
1
), pp.
12
20
.
9.
Majidi
,
C.
,
2014
, “
Soft Robotics: A Perspective—Current Trends and Prospects for the Future
,”
Soft Robot.
,
1
(
1
), pp.
2
11
.
10.
Gravagne
,
I.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE-ASME Trans. Mech.
,
8
(
2
), pp.
299
307
.
11.
Gravagne
,
I.
, and
Walker
,
I. D.
,
2002
, “
Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators
,”
IEEE Trans. Robot. Autom.
,
18
(
3
), pp.
263
273
.
12.
Buckingham
,
R.
,
2002
, “
Snake Arm Robots
,”
Ind. Robot.
,
29
(
3
), pp.
242
245
.
13.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Robot.
,
24
(
6
), pp.
1262
1273
.
14.
Yip
,
M. C.
, and
Camarillo
,
D. B.
,
2014
, “
Model-Less Feedback Control of Continuum Manipulators in Constrained Environments
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
880
889
.
15.
Hu
,
H.
,
Wang
,
P.
, and
Sun
,
L.
,
2010
, “
Kinematic Analysis and Simulation for Cable-Driven Continuum Robot
,”
J. Mech. Eng.
,
46
(
19
), pp.
1
8
.
16.
Ayvali
,
E.
, and
Desai
,
J. P.
,
2012
, “
Towards a Discretely Actuated Steerable Cannula
,”
2012 IEEE International Conference on Robotics and Automation (ICRA)
,
St. Paul, MN
,
May 14–18
, pp.
1614
1619
.
17.
Rucker
,
D. C.
,
Jones
,
B. B.
, and
Webster
,
R. J.
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Robot.
,
26
(
5
), pp.
769
780
.
18.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Mechanics Modeling of Multisegment Rod-Driven Continuum Robots
,”
J. Mech. Robot.
,
6
(
4
), p.
041006
.
19.
Dupont
,
P.
,
Lock
,
J.
, and
Butler
,
E.
,
2009
, “
Torsional Kinematic Model for Concentric Tube Robots
,”
IEEE International Conference on Robotics & Automation (ICRA)
,
Kobe, Japan
,
May 12–17
, pp.
3851
3858
.
20.
Torres
,
L. G.
, and
Alterovitz
,
R.
,
2011
, “
Motion Planning for Concentric Tube Robots Using Mechanics-Based Models
,”
IEEE/RSJ International Conference on Intelligent Robots & Systems (ICRO)
,
Taipei
,
Oct. 18–22
, pp.
5153
5159
.
21.
Wei
,
W.
, and
Simaan
,
N.
,
2012
, “
Modeling, Force Sensing, and Control of Flexible Cannulas for Microstent Delivery
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
4
), p.
041004
.
22.
Flint
,
P.
,
Simaan
,
N.
, and
Taylor
,
R.
,
2004
, “
High Dexterity Snake-Like Robotic Slaves for Minimally Invasive Telesurgery of the Upper Airway
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
,
Saint-Malo, France
,
Sept. 26–29
, pp.
17
24
.
23.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Robot.
,
22
(
1
), pp.
43
55
.
24.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Practical Kinematics for Real-Time Implementation of Continuum Robots
,”
IEEE Trans. Robot.
,
22
(
6
), pp.
1087
1099
.
25.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
935
949
.
26.
Ranzani
,
T.
,
Gerboni
,
G.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2015
, “
A Bioinspired Soft Manipulator for Minimally Invasive Surgery
,”
Bioinspir. Biomim.
,
10
(
3
), p.
035008
.
27.
Godage
,
I. S.
,
Nanayakkara
,
T.
, and
Caldwell
,
D. G.
,
2012
, “
Locomotion With Continuum Limbs
,”
IEEE/RSJ International Conference on Intelligent Robot Systems (IROS)
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
293
298
.
28.
Marchese
,
A.
,
Komorowski
,
K.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2014
, “
Design and Control of a Soft and Continuously Deformable 2D Robotic Manipulation System
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong
,
May 31–June 5
, pp.
2189
2196
.
29.
Cieslak
,
R.
, and
Morecki
,
A.
,
1999
, “
Elephant Trunk Type Elastic Manipulator—A Tool for Bulk and Liquid Type Materials Transportation
,”
Robotica
,
17
, pp.
11
16
.
30.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Robot. Syst.
,
20
(
2
), pp.
45
63
.
31.
Tsukagoshi
,
H.
,
Kitagawa
,
A.
, and
Segawa
,
M.
,
2001
, “
Active Hose: An Artificial Elephant’s Nose With Maneuverability for Rescue Operation
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seoul, Korea
,
May 21–26
, pp.
2454
2459
.
32.
Wilson
,
J. F.
,
Li
,
D.
,
Chen
,
Z.
, and
George
,
R. T.
,
1993
, “
Flexible Robot Manipulators and Grippers: Relatives of Elephant Trunks and Squid Tentacles
,”
Robots and Biological Systems: Toward a New Bionics?
,
P.
Dario
,
G.
Sandini
, and
P.
Aebischer
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
474
479
.
33.
Bischof
,
B.
,
Kirstein
,
L.
,
Starke
,
J.
,
Guenther
,
H.
, and
Foth
,
W.-P.
,
2002
, “
ROGER-Robotic Geostationary Orbit Restorer
,”
34th COSPAR Scientific Assembly, The Second World Space Congress
,
Houston, TX
,
Oct. 10–19
, Vol.
109
, pp.
183
193
.
34.
Huang
,
Z.
,
Liu
,
J.
, and
Li
,
Q.
,
2008
, “
A Unified Methodology for Mobility Analysis Based on Screw Theory
,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
, and
J.
Xi
, eds.,
Springer
,
London
, pp.
49
59
.
You do not currently have access to this content.