Driving system parameters optimization, especially the optimal selection of specifications of motor and gearbox, is very important for improving high-speed parallel robots' performance. A very challenging issue is parallel robots' performance evaluation that should be able to illustrate robots' performance accurately and guide driving system parameters optimization effectively. However, this issue is complicated by parallel robots' anisotropic translational and rotational dynamic performance, and the multiparameters of motors and gearboxes. In this paper, by separating the influence of translational and rotational degrees-of-freedom (DOFs) on robots' performance, a new dynamic performance index is proposed to reflect the driving torque in instantaneous acceleration. Then, the influence of driving system's multiparameters on robots' driving torque in instantaneous acceleration and cycle time in continuous motion is investigated. Based on the investigation, an inertia matching index is further derived which is more suitable for minimizing the driving torque of parallel robots with translational and rotational DOFs. A comprehensive parameterized performance atlas is finally established. Based on this atlas, the performance of a high-speed parallel robot developed in this paper can be clearly evaluated, and the optimal combination of motors and gearboxes can be quickly selected to ensure low driving torque and high pick-and-place frequency.

References

1.
Staicu
,
S.
,
2009
, “
Recursive Modelling in Dynamics of Delta Parallel Robot
,”
Robotica
,
27
(
02
), pp.
199
207
.
2.
Gallardo-Alvarado
,
J.
,
Abedinnasab
,
M. H.
, and
Lichtblau
,
D.
,
2016
, “
Simplified Kinematics for a Parallel Manipulator Generator of the Schönflies Motion
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061020
.
3.
Xie
,
F. G.
, and
Liu
,
X. J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
4.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Zhou
,
Y. H.
,
2013
, “
A Parallel Robot With SCARA Motions and Its Kinematic Issues
,”
3th IFToMM International Symposium on Robotics and Mechatronics
(
ISRM
), Singapore, Oct. 2–4, pp.
53
62
.
5.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2014
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1333
1343
.
6.
Lee
,
D.
, and
Seo
,
T.
,
2017
, “
Lightweight Multi-DOF Manipulator With Wire-Driven Gravity Compensation Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1308
1314
.
7.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051003
.
8.
Han
,
G.
,
Xie
,
F. G.
, and
Liu
,
X. J.
,
2015
, “
Optimal Selection of Servo Motor and Reduction Ratio for High-Speed Parallel Robots
,”
8th International Conference on Intelligent Robotics and Applications
(
ICIRA 2015
), Portsmouth, UK, Aug. 24–27, pp.
109
120
.
9.
Yang
,
M.
,
Wang
,
C.
,
Xu
,
D.
,
Zheng
,
W.
, and
Lang
,
X.
,
2016
, “
Shaft Torque Limiting Control Using Shaft Torque Compensator for Two-Inertia Elastic System With Backlash
,”
IEEE/ASME Trans. Mechatronics
,
21
(
6
), pp.
2902
2911
.
10.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2017
, “
Design and Kinematic Optimization of a Two Degrees-of-Freedom Planar Remote Center of Motion Mechanism for Minimally Invasive Surgery Manipulators
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031013
.
11.
Roos
,
F.
,
Johansson
,
H.
, and
Wikander
,
J.
,
2006
, “
Optimal Selection of Motor and Gearhead in Mechatronic Application
,”
Mechatronics
,
16
(
1
), pp.
63
72
.
12.
Komati
,
B.
,
Clévy
,
C.
, and
Lutz
,
P.
,
2016
, “
High Bandwidth Microgripper With Integrated Force Sensors and Position Estimation for the Grasp of Multistiffness Microcomponents
,”
IEEE/ASME Trans. Mechatronics
,
21
(
4
), pp.
2039
2049
.
13.
Shin
,
D.
,
Tanaka
,
A.
,
Kim
,
N.
, and
Khatib
,
O.
,
2016
, “
A Centrifugal Force-Based Configuration-Independent High-Torque-Density Passive Brake for Human-Friendly Robots
,”
IEEE/ASME Trans. Mechatronics
,
21
(
6
), pp.
2827
2835
.
14.
Cusimano
,
G.
,
2007
, “
Optimization of the Choice of the System Electric Drive-Device–Transmission for Mechatronic Applications
,”
Mech. Mach. Theory
,
42
(
1
), pp.
48
65
.
15.
Van de Straete
,
H. J.
,
Degezelle
,
P.
,
Schutter
,
J. D.
, and
Belmans
,
R.
,
1998
, “
Servo Motor Selection Criterion for Mechatronics Applications
,”
IEEE/ASME Trans. Mechatronics
,
3
(
1
), pp.
43
50
.
16.
Van de Straete
,
H. J.
,
Schutter
,
J. D.
, and
Belmans
,
R.
,
1999
, “
An Efficient Procedure for Checking Performance Limits in Servo Drive Selection and Optimization
,”
IEEE/ASME Trans. Mechatronics
,
4
(
4
), pp.
378
386
.
17.
Choi
,
C.
,
Jung
,
S.
,
Kim
,
S.
,
Lee
,
J.
,
Choe
,
T. S.
,
Chung
,
S. C.
, and
Park
,
Y.
,
2007
, “
A Motor Selection Technique for Designing a Manipulator
,” International Conference on Control, Automation and Systems (
ICCAS '07
), Seoul, South Korea, Oct. 17–20, pp.
2487
2492
.https://ieeexplore.ieee.org/document/4406782/
18.
Cusimano
,
G.
, 2011, “
Choice of Electrical Motor and Transmission in Mechatronic Applications: The Torque Peak
,”
Mech. Mach. Theory
,
46
(9), pp. 1207–1235.
19.
Cusimano
,
G.
,
2015
, “
Choice of Motor and Transmission in Mechatronic Applications: Nonrectangular Dynamic Range of the Drive System
,”
Mech. Mach. Theory
,
85
, pp.
35
52
.
20.
Wei
,
B.
,
Gao
,
F.
,
Chen
,
J.
,
He
,
J.
, and
Zhao
,
X.
,
2011
, “
A Method for Selecting Driving System Parameters of a New Electric Shovel's Excavating Mechanism With Three-DOF
,”
Proc. IMechE, Part C
,
225
(
11
), pp.
2661
2672
.
21.
Cusimano
,
G.
,
2013
, “
Influence of the Reducer Efficiencies on the Choice of Motor and Transmission: Torque Peak of the Motor
,”
Mech. Mach. Theory
,
67
, pp.
122
151
.
22.
Giberti
,
H.
,
Cinquemani
,
S.
, and
Legnani
,
G.
,
2010
, “
Effects of Transmission Mechanical Characteristics on the Choice of a Motor-Reducer
,”
Mechatronics
,
20
(
5
), pp.
604
610
.
23.
Pasch
,
K. A.
, and
Seering
,
W. P.
,
1984
, “
On the Drive Systems for High-Performance Machines
,”
ASME J. Mech., Trans., Autom.
,
106
(
1
), pp.
102
108
.
24.
Chen
,
D. Z.
, and
Tsai
,
L. W.
,
1991
, “
The Generalized Principle of Inertia Match for Geared Robotic Mechanisms
,”
IEEE
International Conference on Robotics and Automation
, Sacramento, CA, Apr. 9–11, pp.
1282
1287
.
25.
Zhang
,
G.
, and
Furusho
,
J.
,
2000
, “
Speed Control of Two-Inertia System by PI/PID Control
,”
IEEE Trans. Ind. Electron.
,
47
(
3
), pp.
603
609
.
26.
Cetinkunt
,
S.
,
1991
, “
Optimal Design Issues in High-Speed High-Precision Motion Servo Systems
,”
Mechatronics
,
1
(
2
), pp.
187
201
.
27.
Jiang
,
H. Z.
,
He
,
J. F.
, and
Tong
,
Z. Z.
,
2010
, “
Characteristics Analysis of Joint Space Inverse Mass Matrix for the Optimal Design of a 6-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
45
(
5
), pp.
722
739
.
28.
Huang
,
T.
,
Mei
,
J.
,
Li
,
Z.
, Zhao, X., and Chetwynd, D. G.,
2004
, “
A Method for Estimating Servomotor Parameters of a Parallel Robot for Rapid Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
596
601
.
29.
Shao
,
Z. F.
,
Tang
,
X.
,
Chen
,
X.
, and
Wang
,
L. P.
,
2012
, “
Research on the Inertia Matching of the Stewart Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
28
(
6
), pp.
649
659
.
30.
Viau
,
J.
,
Chouinard
,
P.
,
Bigué
,
J. P. L.
,
Julió
,
G.
,
Michaud
,
F.
, and
Plante
,
J. S.
,
2017
, “
Tendon-Driven Manipulator Actuated by Magnetorheological Clutches Exhibiting Both High-Power and Soft Motion Capabilities
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
561
571
.
31.
Merlet
,
J. P.
,
1999
, “
Parallel Robot: Open Problems
,”
9th International Symposium of Robotics Research
, Snowbird, Utah, Oct. 9–12, pp.
9
12
.https://www-sop.inria.fr/teams/hephaistos/PDF/merlet_isrr99.pdf
32.
Bowling
,
A.
, and
Khatib
,
O.
,
2005
, “
The Dynamic Capability Equations: A New Tool for Analyzing Robotic Manipulator Performance
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
115
123
.
33.
Li
,
Q.
,
Zhang
,
N.
, and
Wang
,
F.
,
2016
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011007
.
34.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
35.
Liu
,
X. J.
,
Wang
,
J. S.
, and
Kim
,
J.
,
2006
, “
Determination of the Link Lengths for a Spatial 3-DOF Parallel Manipulator
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
365
373
.
36.
Mansouri
,
I.
, and
Ouali
,
M.
,
2011
, “
The Power Manipulability—A New Homogeneous Performance Index of Robot Manipulators
,”
Rob. Comput.-Integr. Manuf.
,
27
(
2
), pp.
434
449
.
37.
Zhao
,
Y. J.
,
2012
, “
Dynamic Optimum Design of a Three Translational Degrees of Freedom Parallel Robot While Considering Anisotropic Property
,”
Rob. Comput.-Integr. Manuf.
,
29
(
4
), pp.
100
112
.
38.
Wu
,
J.
,
Zhang
,
B.
, and
Wang
,
L.
,
2016
, “
A Measure for Evaluation of Maximum Acceleration of Redundant and Nonredundant Parallel Manipulators
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021001
.
39.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.
40.
Huang
,
T.
,
Li
,
M.
,
Li
,
Z.
,
Chetwynd
,
D. G.
, and
Whitehouse
,
D. J.
,
2004
, “
Optimal Kinematic Design of 2-DOF Parallel Manipulators With Well-Shaped Workspace Bounded by a Specified Conditioning Index
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
538
543
.
41.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
,” U.S. Patent No.
4976582
.https://patents.google.com/patent/US4976582A/en
42.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-Dof Parallel Robots
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Atlanta, GA, Sept. 19–23, pp.
508
513
.
You do not currently have access to this content.