Abstract

Geometric Design and Tolerancing (GD&T) is the language that specifies several design features and, in this paper, is used to deal with the tolerances of Translational Parallel Manipulators (TPMs). TPMs intend to make a platform have only translational motion with respect to the frame (base), but, in practice, TPMs’ platforms present undesirable rotation motions due to unavoidable geometric errors in links’ sizes. During the machine-element design, geometric errors can be limited by imposing given tolerances on links’ sizes and the tighter tolerances are the higher manufacturing costs are. Therefore, dealing with tolerances is the key for designing a TPM with assigned requirements in terms of platform’s rotation limits. In this context, this paper moves from the fact that machining processes generate link sizes with values distributed according to Gaussian distributions, whose mean values are the nominal sizes and whose standard deviations depend on the machining process accuracy, to build a novel method that makes a designer able to satisfy an assigned maximum orientation error on the TPM platform. The proposed method consists of two main phases: (a) identification of the geometric parameters that affect platform’s position and orientation, and (b) an analysis, based on numerical simulations, that relates the tolerances assigned to the identified parameters and the positioning precision of the platform. The method can be adapted to other types of lower-mobility robots (LMRs). A case study is also discussed to better illustrate the method.

References

1.
Cogorno
,
G. R.
,
2020
,
Geometric Dimensioning and Tolerancing for Mechanical Design
,
McGraw-Hill Education
,
New York, NY
.
2.
Tornincasa
,
S.
,
2021
,
Technical Drawing for Product Design: Mastering ISO GPS and ASME GD&T
,
Springer
,
Cham, Switzerland
.
3.
Henzold
,
G.
,
2021
,
Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection: A Handbook for Geometrical Product Specification Using ISO and ASME Standards
, 3rd Ed.,
Elsevier: Cambridge
,
MA
.
4.
Zong
,
Y.
, and
Mao
,
J.
,
2015
, “
Tolerance Optimization Design Based on the Manufacturing-Costs of Assembly Quality
,”
Proc. CIRP
,
27
, pp.
324
329
.
5.
Takaya
,
Y.
,
2014
, “
In-Process and On-Machine Measurement of Machining Accuracy for Process and Product Quality Management: A Review
,”
Int. J. Automation Technol.
,
8
(
1
), pp.
4
19
.
6.
Taniguchi
,
N.
,
1983
, “
Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing
,”
Ann. CIRP
,
32
(
2
), pp.
573
582
.
7.
Pandremenos
,
J.
,
Doukas
,
C.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2011
, “
Machining With Robots: A Critical Review
,”
Proceedings of the 7th International Conference on Digital Enterprise Technology (DET2011)
,
Athens, Greece
,
Sept. 28–30, 2011
, pp.
614
621
.
8.
Zhang
,
Z.
,
Yan
,
J.
, and
Kuriyagawa
,
T.
,
2019
, “
Manufacturing Technologies Toward Extreme Precision
,”
Int. J. Extrem. Manuf.
,
1
(
2
), p.
022001
.
9.
Woldman
,
N. E.
, and
Gibbons
,
R. C.
,
1951
,
Machinability and Machining of Metals
,
McGraw-Hill
,
New York, NY
.
10.
Walter
,
M. S. J.
,
Spruegel
,
T. C.
, and
Wartzack
,
S.
,
2015
, “
Least Cost Tolerance Allocation for Systems With Time-Variant Deviations
,”
Proc. CIRP
,
27
, pp.
1
9
.
11.
Ning
,
F.
,
Qu
,
H.
,
Shi
,
Y.
,
Cai
,
M.
, and
Xu
,
W.
,
2022
, “
Feature-Based and Process-Based Manufacturing Cost Estimation
,”
Machines
,
10
(
5
), p.
319
.
12.
Armillotta
,
A.
,
2013
, “
A Method for Computer-Aided Specification of Geometric Tolerances
,”
Comput.-Aided Des.
,
45
(
12
), pp.
1604
1616
.
13.
Chen
,
H.
,
Jin
,
S.
,
Li
,
Z.
, and
Lai
,
X.
,
2014
, “
A Comprehensive Study of Three Dimensional Tolerance Analysis Methods
,”
Comput.-Aided Des.
,
53
, pp.
1
13
.
14.
Idriss
,
D.
,
Beaurepaire
,
P.
,
Homri
,
L.
, and
Gayton
,
N.
,
2018
, “
Tolerance Analysis—Key Characteristics Identification by Sensitivity Methods
,”
Proc. CIRP
,
75
, pp.
33
38
.
15.
Liu
,
J.
,
Zhang
,
Z.
,
Ding
,
X.
, and
Shao
,
N.
,
2018
, “
Integrating Form Errors and Local Surface Deformations Into Tolerance Analysis Based on Skin Model Shapes and a Boundary Element Method
,”
Comput.-Aided Des.
,
104
, pp.
45
59
.
16.
Sartori
,
S.
, and
Zhang
,
G. X.
,
1995
, “
Geometric Error Measurement and Compensation of Machines
,”
Ann. CIRP
,
44
(
2
), pp.
599
609
.
17.
Schwenke
,
H.
,
Knapp
,
W.
,
Haitjema
,
H.
,
Weckenmann
,
A.
,
Schmitt
,
R.
, and
Delbressine
,
F.
,
2008
, “
Geometric Error Measurement and Compensation of Machines—An Update
,”
CIRP Ann.
,
57
(
2
), pp.
660
675
.
18.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
2002
, “
Geometric Errors Versus Calibration in Manipulators With Less Than 6 DOF
,” Romansy 14.
G.
Bianchi
,
J. C.
Guinot
, and
C.
Rzymkowski
, eds., International Centre for Mechanical Sciences, Vol
438
, p.
31
-
38
.
Springer
:
Vienna, Austria
.
19.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021013
.
20.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2002
, “
Structure Synthesis of a Class of 4-DOF and 5-DOF Parallel Manipulators With Identical Limb Structures
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
799
810
.
21.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer-Verlag, Berlin
,
Germany
.
22.
Klimchik
,
A.
,
Chablat
,
D.
, and
Pashkevich
,
A.
,
2014
, “
Stiffness Modeling for Perfect and Non-Perfect Parallel Manipulators Under Internal and External Loadings
,”
Mech. Mach. Theory
,
79
, pp.
1
28
.
23.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
,
2006
, “
Sensitivity Analysis of the Orthoglide: A 3-DOF Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
392
402
.
24.
Huang
,
T.
,
Whitehouse
,
D. J.
, and
Chetwynd
,
D. G.
,
2002
, “
A Unified Error Model for Tolerance Design, Assembly and Error Compensation of 3-DOF Parallel Kinematic Machines With Parallelogram Struts
,”
CIRP Ann. Manuf. Technol.
,
51
(
1
), pp.
297
301
.
25.
Huang
,
T.
,
Chetwynd
,
D. G.
,
Mei
,
J. P.
, and
Zhao
,
X. M.
,
2006
, “
Tolerance Design of a 2-DOF Overconstrained Translational Parallel Robot
,”
IEEE Trans. Robot.
,
22
(
1
), pp.
167
172
.
26.
Mei
,
J.
,
Ni
,
Y.
,
Li
,
Y.
,
Zhang
,
L.
, and
Liu
,
F.
,
2009
, “
The Error Modeling and Accuracy Synthesis of a 3-DOF Parallel Robot Delta-S
,”
Proceedings of 2009 International Conference on Information and Automation
,
Zhuhai/Macau, China
,
June 22–24, 2009
, pp.
289
294
.
27.
Li
,
Y.
,
Li
,
C.
,
Qu
,
D.
,
Duan
,
S.
,
Bai
,
X.
, and
Shen
,
H.
,
2012
, “
Errors Modeling and Sensitivity Analysis for a Novel Parallel Manipulator
,”
Proceedings of 2012 IEEE International Conference on Mechatronics and Automation
,
Chengdu, China
,
Aug. 5–8, 2012
, pp.
755
760
.
28.
Tian
,
W.
,
Gao
,
W.
,
Chang
,
W.
, and
Nie
,
Y.
,
2014
, “
Error Modeling and Sensitivity Analysis of a Five-Axis Machine Tool
,”
Math. Probl. Eng.
,
2014
, pp.
1
9
.
29.
Chen
,
Y.
,
Xie
,
F.
,
Liu
,
X.
, et al
,
2014
, “
Error Modeling and Sensitivity Analysis of a Parallel Robot with SCARA (Selective Compliance Assembly Robot Arm) Motions
,”
Chin. J. Mech. Eng.
,
27
(
4
), pp.
693
702
.
30.
Barai
,
S.
,
Jaiswal
,
A.
, and
Lochan
,
K.
,
2022
, “
Positional Error Analysis of 3-RPR Planar Parallel Manipulator Under the Influence of Tolerances
,”
Mater. Today: Proc.
,
62
, pp.
1526
1531
.
31.
Jain
,
A.
, and
Jawale
,
H. P.
,
2022
, “
Study of the Effects of Link Tolerances to Estimate Mechanical Errors in 3-RRS Parallel Manipulator
,”
Procs. ImechE: Part C, J. Mech. Eng. Sci.
,
236
(
3
), pp.
1598
1615
.
32.
Jawale
,
H. P.
, and
Jain
,
S.
,
2022
, “
Investigating Workspace and Positional Accuracy in 3 Degrees of Freedom Planar Manipulator Under the Link Tolerances
,”
Procs. ImechE: Part C, J. Mech. Eng. Sci.
,
236
(
13
), pp.
7179
7196
.
33.
Kumaraswamy
,
U.
,
Shunmugam
,
M. S.
, and
Sujatha
,
S.
,
2013
, “
A Unified Framework for Tolerance Analysis of Planar and Spatial Mechanisms Using Screw Theory
,”
Mech. Mach. Theory
,
69
, pp.
168
184
.
34.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2016
, “
Geometric Error Effects on Manipulators’ Positioning Precision: A General Analysis and Evaluation Method
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
61016
.
35.
Kalos
,
M. H.
, and
Whitlock
,
P. A.
,
2008
,
Monte Carlo Methods
, 2nd ed.,
WILEY-VCH Verlag GmbH & Co. KgaA
,
Weinheim, Germany
.
36.
Ash
,
R. B.
,
2008
,
Basic Probability Theory
,
Dover Publications, Inc
,
New York, NY
.
37.
Hervé
,
J. M.
,
1994
, “
The Mathematical Group Structure of the Set of Displacements
,”
Mech. Mach. Theory
,
29
(
1
), pp.
73
81
.
38.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: the Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York, NY
.
39.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
40.
Hervé
,
J. M.
,
1978
, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
41.
Hervé
,
J. M.
,
1982
, “
Intrinsic Formulation of Problems of Geometry and Kinematics of Mechanisms
,”
Mech. Mach. Theory
,
17
(
3
), pp.
179
184
.
42.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
43.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1965
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York, NY
.
44.
Di Gregorio
,
R.
,
2020
, “
A Novel 3-URU Architecture With Actuators on the Base: Kinematics and Singularity Analysis
,”
Robotics
,
9
(
3
), p.
60
.
45.
Di Gregorio
,
R.
,
2021
, “
Direct Position Analysis of a Particular Translational 3-URU Manipulator
,”
ASME. J. Mech. Rob.
,
13
(
6
), p.
061007
.
46.
Di Gregorio
,
R.
,
2022
, “
Dimensional Synthesis of a Novel 3-URU Translational Manipulator Implemented Through a Novel Method
,”
Robotics
,
11
(
1
), p.
10
.
47.
Di Gregorio
,
R.
,
2020
, “
A Review of the Literature on the Lower-Mobility Parallel Manipulators of 3-UPU or 3-URU Type
,”
Robotics
,
9
(
1
), p.
5
.
48.
Yan
,
X.
, and
Su
,
X. G.
,
2009
,
Linear Regression Analysis: Theory and Computing
,
World Scientific
,
London, UK
.
You do not currently have access to this content.