Abstract

The ensemble of surrogate models has attracted more and more attention due to their more stable performance than individual models. This work proposes a novel adaptive ensemble of surrogate models based on the minimum screening index. Constructing the screening index to realize the definition and elimination of a global poor model to further update the model library. Compared with the cross-validation error, this index presents better reliability in the model library update. The baseline model is determined by the minimum screening index to further propose a new weight calculation strategy based on this baseline model; 35 test functions are used to evaluate the performance of the proposed model. The results show that this model presents better accuracy and robustness than the individual surrogates and the other ensemble of surrogate models. More importantly, in engineering applications, the same results are also obtained, indicating that the proposed model has a higher priority than the other ensemble of surrogate models. This effective model gives a new way for the design of engineering problems.

References

1.
Qian
,
J. C.
,
Yi
,
J. X.
,
Cheng
,
Y. S.
,
Liu
,
J.
, and
Zhou
,
Q.
,
2020
, “
A Sequential Constraints Updating Approach for Kriging Surrogate Model-Assisted Engineering Optimization Design Problem
,”
Eng. Comput.
,
36
(
3
), pp.
993
1009
.
2.
Jung
,
Y. S.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
.
3.
Jiang
,
C.
,
Qiu
,
H. B.
,
Yang
,
Z.
,
Chen
,
L. M.
,
Gao
,
L.
, and
Li
,
P. G.
,
2019
, “
A General Failure-Pursuing Sampling Framework for Surrogate-Based Reliability Analysis
,”
Reliab. Eng. Syst. Safe.
,
183
, pp.
47
59
.
4.
Hariri-Ardebili
,
M. A.
,
2018
, “
MCS-Based Response Surface Metamodels and Optimal Design of Experiments for Gravity Dams
,”
Struct. Infrastruct. Eng.
,
14
(
12
), pp.
1641
1663
.
5.
Chatterjee
,
T.
,
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2019
, “
A Critical Review of Surrogate Assisted Robust Design Optimization
,”
Arch. Comput. Methods Eng.
,
26
(
1
), pp.
245
274
.
6.
Assari
,
P.
, and
Dehghan
,
M.
,
2017
, “
The Numerical Solution of Two-Dimensional Logarithmic Integral Equations on Normal Domains Using Radial Basis Functions With Polynomial Precision
,”
Eng. Comput.
,
33
(
4
), pp.
853
870
.
7.
Liu
,
X.
,
Liu
,
X.
,
Zhou
,
Z. H.
, and
Hu
,
L.
,
2021
, “
An Efficient Multi-objective Optimization Method Based on the Adaptive Approximation Model of the Radial Basis Function
,”
Struct. Multidiscip. Optim.
,
63
(
3
), pp.
1385
1403
.
8.
Urquhart
,
M.
,
Ljungskog
,
E.
, and
Sebben
,
S.
,
2020
, “
Surrogate-Based Optimisation Using Adaptively Scaled Radial Basis Functions
,”
Appl. Soft Comput.
,
88
, p.
106050
.
9.
Bouhlel
,
M. A.
, and
Martins
,
J. R. R. A.
,
2019
, “
Gradient-Enhanced Kriging for High-Dimensional Problems
,”
Eng. Comput.
,
35
(
1
), pp.
157
173
.
10.
Chen
,
Z.
,
Peng
,
S.
,
Li
,
X.
,
Qiu
,
H.
,
Xiong
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2015
, “
An Important Boundary Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
52
(
1
), pp.
55
70
.
11.
Jiang
,
P.
,
Zhang
,
Y. H.
,
Zhou
,
Q.
,
Shao
,
X. Y.
,
Hu
,
J. X.
, and
Shu
,
L. S.
,
2018
, “
An Adaptive Sampling Strategy for Kriging Metamodel Based on Delaunay Triangulation and TOPSIS
,”
Appl. Intell.
,
48
(
6
), pp.
1644
1656
.
12.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2004
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
13.
Jiang
,
C.
,
Cai
,
X. W.
,
Qiu
,
H. B.
,
Gao
,
L.
, and
Li
,
P. G.
,
2018
, “
A Two-Stage Support Vector Regression Assisted Sequential Sampling Approach for Global Metamodeling
,”
Struct. Multidiscip. Optim.
,
58
(
4
), pp.
1657
1672
.
14.
Prado
,
D. R.
,
López-Fernández
,
J. A.
,
Arrebola
,
M.
, and
Goussetis
,
G.
,
2020
, “
On the Use of the Angle of Incidence in Support Vector Regression Surrogate Models for Practical Reflectarray Design
,”
IEEE Trans. Antennas Propag.
,
69
(
3
), pp.
1787
1792
.
15.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2018
, “
Multiple Surrogate-Assisted Many-Objective Optimization for Computationally Expensive Engineering Design
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051403
.
16.
Lye
,
K. O.
,
Mishra
,
S.
,
Ray
,
D.
, and
Chandrashekar
,
P.
,
2021
, “
Iterative Surrogate Model Optimization (ISMO): An Active Learning Algorithm for PDE Constrained Optimization With Deep Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
374
, p.
113575
.
17.
Lim
,
D.
,
Ong
,
Y. S.
,
Jin
,
Y.
, and
Sendhoff
,
B.
,
2007
, “
A Study on Metamodeling Techniques, Ensembles, and Multi-surrogates in Evolutionary Computation
,”
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation
,
Boston, MA
,
July 9–13
, pp.
1288
1295
.
18.
Cheng
,
K.
, and
Lu
,
Z.
,
2020
, “
Structural Reliability Analysis Based on Ensemble Learning of Surrogate Models
,”
Struct. Saf.
,
83
, p.
101905
.
19.
Zhao
,
Y.
,
Sun
,
C. L.
,
Zeng
,
J. C.
,
Tan
,
Y.
, and
Zhang
,
G. C.
,
2021
, “
A Surrogate-Ensemble Assisted Expensive Many-Objective Optimization
,”
Knowl.-Based Syst.
,
211
, p.
106520
.
20.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
199
216
.
21.
Zerpa
,
L. E.
,
Queipo
,
N. V.
,
Pintos
,
S.
, and
Salager
,
J. L.
,
2005
, “
An Optimization Methodology of Alkaline–Surfactant–Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates
,”
J. Petrol. Sci. Eng.
,
47
(
3–4
), pp.
197
208
.
22.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
(
4
), pp.
439
457
.
23.
Acar
,
E.
, and
Rais-Rohani
,
M.
,
2009
, “
Ensemble of Metamodels With Optimized Weight Factors
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
279
294
.
24.
Ferreira
,
W. G.
, and
Serpa
,
A. L.
,
2016
, “
Ensemble of Metamodels: The Augmented Least Squares Approach
,”
Struct. Multidiscip. Optim.
,
53
(
5
), pp.
1019
1046
.
25.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
,
Meng
,
J.
, and
Yang
,
S.
,
2016
, “
Optimal Weighted Pointwise Ensemble of Radial Basis Functions With Different Basis Functions
,”
AIAA J.
,
54
(
10
), pp.
3117
3133
.
26.
Pang
,
Y.
,
Wang
,
Y. T.
,
Sun
,
W.
, and
Song
,
X. G.
,
2021
, “
OTL-PEM: An Optimization-Based Two-Layer Pointwise Ensemble of Surrogate Models
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051702
.
27.
Lee
,
Y.
, and
Choi
,
D. H.
,
2014
, “
Pointwise Ensemble of Meta-models Using v Nearest Points Cross-validation
,”
Struct. Multidiscip. Optim.
,
50
(
3
), pp.
383
394
.
28.
Zhang
,
J.
,
Yue
,
X. X.
,
Qiu
,
J. J.
,
Zhang
,
M. Y.
, and
Wang
,
X. M.
,
2021
, “
A Unified Ensemble of Surrogates With Global and Local Measures for Global Metamodeling
,”
Eng. Optimiz.
,
53
(
3
), pp.
474
495
.
29.
Zhang
,
J.
,
Chowdhury
,
S.
, and
Messac
,
A.
,
2012
, “
An Adaptive Hybrid Surrogate Model
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
223
238
.
30.
Song
,
X. G.
,
Lv
,
L. Y.
,
Li
,
J.
,
Sun
,
W.
, and
Zhang
,
J.
,
2018
, “
An Advanced and Robust Ensemble Surrogate Model: Extended Adaptive Hybrid Functions
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041402
.
31.
Ye
,
Y.
,
Wang
,
Z.
, and
Zhang
,
X.
,
2020
, “
An Optimal Pointwise Weighted Ensemble of Surrogates Based on Minimization of Local Mean Square Error
,”
Struct. Multidiscip. Optim.
,
62
(
2
), pp.
529
542
.
32.
Acar
,
E.
,
2010
, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidiscip. Optim.
,
42
(
6
), pp.
879
896
.
33.
Arlot
,
S.
, and
Celisse
,
A.
,
2010
, “
A Survey of Cross-validation Procedures for Model Selection
,”
Stat. Surv.
,
4
, pp.
40
79
.
34.
Kaminsky
,
A. L.
,
Wang
,
Y.
, and
Pant
,
K.
,
2021
, “
An Efficient Batch K-Fold Cross-validation Voronoi Adaptive Sampling Technique for Global Surrogate Modeling
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011706
.
35.
Viana
,
F. A. C.
,
2010
,
SURROGATES Toolbox User’s Guide
,
Gainesville, FL
.
36.
Talgorn
,
B.
,
Kokkolaras
,
M.
, and
Digabel
,
S. L.
,
2015
, “
Statistical Surrogate Formulations for Simulation-Based Design Optimization
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021405
.
37.
Gramacy
,
R. B.
, and
Lee
,
H. K. H.
,
2012
, “
Cases for the Nugget in Modeling Computer Experiments
,”
Stat. Comput.
,
22
(
3
), pp.
713
722
.
38.
Mullur
,
A. A.
, and
Messac
,
A.
,
2006
, “
Metamodeling Using Extended Radial Basis Functions: A Comparative Approach
,”
Eng. Comput.
,
21
(
3
), pp.
203
217
.
39.
Park
,
J. S.
,
1994
, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plan. Infer.
,
39
(
1
), pp.
95
111
.
40.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), p.
455
492
.
You do not currently have access to this content.