Abstract

Topology optimization uses a variable permeability approach to manipulate flow geometries. Such a method has been employed in the current work to modify the geometric configuration of internal cooling ducts by manipulating the distribution of material blockage. A modified version of the OpenFOAM solver AdjointShapeOptimizationFOAM has been used to optimize the flow-path of a serpentine channel and high aspect ratio rectangular ducts, with increase in heat transfer and reduction in pressure drop as the objective functions. These duct shapes are typically used as internal cooling channels in gas turbine blades for sustaining the blade material at high inlet temperatures. The serpentine channel shape is initially topologically optimized, the fluid path from which is post-processed and re-simulated in star-ccm+. The end result has an improvement in thermal performance efficiency (η) by 24%. Separation regions are found to be reduced when compared to the original baseline. The second test geometry is a high aspect ratio rectangular duct. Weight factors are assigned to the objective functions in this multi-objective approach, which are varied to obtain a unique shape for each such combination. The addition of mass penalization to the existing objective function results in a complex lattice-like structure, which is a different outcome in geometry and shape when compared to the case without any additional penalization. The thermal performance efficiency of this shape is found to be higher by at-least 18% when compared to the computational fluid dynamics results of a few other turbulator shapes from the literature.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Lee
,
H.-A.
, and
Park
,
G.-J.
,
2012
, “
Topology Optimization for Structures With Nonlinear Behavior Using the Equivalent Static Loads Method
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031004
.
3.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
.
4.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.
5.
Alexandersen
,
J.
, and
Andreasen
,
C.
,
2020
, “
A Review of Topology Optimisation for Fluid-Based Problems
,”
Fluids
,
5
(
1
).
6.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
7.
Gersborg-Hansen
,
A.
,
Sigmund
,
O.
, and
Haber
,
R.
,
2005
, “
Topology Optimization of Channel Flow Problems
,”
Struct. Multidiscipl. Optim.
,
30
, pp.
181
192
.
8.
Evgrafov
,
A.
,
2005
, “
The Limits of Porous Materials in the Topology Optimization of Stokes Flows
,”
Appl. Math. Optim.
,
52
(
3
), pp.
263
277
.
9.
Wiker
,
N.
,
Klarbring
,
A.
, and
Borrvall
,
T.
,
2007
, “
Topology Optimization of Regions of Darcy and Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
69
(
7
), pp.
1374
1404
.
10.
Guest
,
J. K.
, and
Smith Genut
,
L. C.
,
2010
, “
Reducing Dimensionality in Topology Optimization Using Adaptive Design Variable Fields
,”
Int. J. Numer. Methods Eng.
,
81
(
8
), pp.
1019
1045
.
11.
Bruns
,
T.
,
2007
, “
Topology Optimization by Penalty (Top) Method
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
45
), pp.
4430
4443
.
12.
Yaji
,
K.
,
Yamada
,
T.
,
Yoshino
,
M.
,
Matsumoto
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2014
, “
Topology Optimization Using the Lattice Boltzmann Method Incorporating Level Set Boundary Expressions
,”
J. Comput. Phys.
,
274
, pp.
158
181
.
13.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
A Variational Level Set Method for the Topology Optimization of Steady-State Navier–Stokes Flow
,”
J. Comput. Phys.
,
227
(
24
), pp.
10178
10195
.
14.
Challis
,
V. J.
, and
Guest
,
J. K.
,
2009
, “
Level Set Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
79
(
10
), pp.
1284
1308
.
15.
Yoshimura
,
M.
,
Shimoyama
,
K.
,
Misaka
,
T.
, and
Obayashi
,
S.
,
2017
, “
Topology Optimization of Fluid Problems Using Genetic Algorithm Assisted by the Kriging Model
,”
Int. J. Numer. Methods Eng.
,
109
(
4
), pp.
514
532
.
16.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method. Structural and Multidisciplinary Optimization
,”
Struct. Multidiscipl. Optim.
,
31
(
4
), pp.
251
259
.
17.
Othmer
,
C.
,
2008
, “
A Continuous Adjoint Formulation for the Computation of Topological and Surface Sensitivities of Ducted Flows
,”
Int. J. Numer. Methods Fluids
,
58
(
8
), pp.
861
877
.
18.
Abdelwahed
,
M.
,
Al Salem
,
A.
,
Chorfi
,
N.
, and
Hassine
,
M.
,
2019
, “
Topological Sensitivity Analysis of a Time-Dependent Nonlinear Problem Boundary Value Problems
,”
Int. J. Numer. Methods Eng.
,
2019
(
1
), pp.
514
532
.
19.
Dede
,
E. M.
,
2009
, “
Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems
,”
IProc Proceedings of the COMSOL Users Conference
,
Boston, MA
.
20.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1225
1233
.
21.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.
22.
Sato
,
Y.
,
Yaji
,
K.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2018
, “
An Optimum Design Method for a Thermal-Fluid Device Incorporating Multiobjective Topology Optimization With an Adaptive Weighting Scheme
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031402
.
23.
Lei
,
T.
,
Alexandersen
,
J.
,
Lazarov
,
B. S.
,
Wang
,
F.
,
Haertel
,
J. H.
,
De Angelis
,
S.
,
Sanna
,
S.
,
Sigmund
,
O.
, and
Engelbrecht
,
K.
,
2018
, “
Investment Casting and Experimental Testing of Heat Sinks Designed by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
127
(
Part B
), pp.
396
412
.
24.
Lazarov
,
B. S.
,
Sigmund
,
O.
,
Meyer
,
K. E.
, and
Alexandersen
,
J.
,
2018
, “
Experimental Validation of Additively Manufactured Optimized Shapes for Passive Cooling
,”
Appl. Energy
,
226
, pp.
330
339
.
25.
Kontoleontos
,
E.
,
Papoutsis-Kiachagias
,
E.
,
Zymaris
,
A.
,
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2013
, “
Adjoint-Based Constrained Topology Optimization for Viscous Flows, Including Heat Transfer
,”
Eng. Optim.
,
45
(
8
), pp.
941
961
.
26.
Dilgen
,
S. B.
,
Dilgen
,
C. B.
,
Fuhrman
,
D. R.
,
Sigmund
,
O.
, and
Lazarov
,
B. S.
,
2018
, “
Density Based Topology Optimization of Turbulent Flow Heat Transfer Systems
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
1905
1918
.
27.
Pietropaoli
,
M.
,
Ahlfeld
,
R.
,
Montomoli
,
F.
,
Ciani
,
A.
, and
D’Ercole
,
M.
,
2017
, “
Design for Additive Manufacturing: Internal Channel Optimization
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102101
.
28.
Pietropaoli
,
M.
,
Montomoli
,
F.
, and
Gaymann
,
A.
,
2019
, “
Three-Dimensional Fluid Topology Optimization for Heat Transfer
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
801
812
.
29.
Philippi
,
B.
, and
Jin
,
Y.
,
2015
, “
Topology Optimization of Turbulent Fluid Flow With a Sensitive Porosity Adjoint Method (SPAM)
,”
preprint arXiv:1512.08445
arXiv:1512.08445.
30.
Jin
,
Y.
,
Uth
,
M.
,
Kuznetsov
,
A.
, and
Herwig
,
H.
,
2015
, “
Numerical Investigation of the Possibility of Macroscopic Turbulence in Porous Media: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
766
, pp.
76
103
.
31.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
American Society of Mechanical Engineers
, pp.
V001T51A001
V001T51A001
.
32.
Mazur
,
Z.
,
Luna-Ramirez
,
A.
,
Juárez-Islas
,
J.
, and
Campos-Amezcua
,
A.
,
2005
, “
Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy
,”
Eng. Failure Anal.
,
12
(
3
), pp.
474
486
.
33.
Ghosh
,
S.
,
Mondal
,
S.
,
Fernandez
,
E.
,
Kapat
,
J. S.
, and
Roy
,
A.
,
2020
, “
Parametric Shape Optimization of Pin-Fin Arrays Using a Surrogate Model-Based Bayesian Method
,”
J. Thermophys. Heat Transfer
,
35
(
2
), pp.
1
11
.
34.
Verstraete
,
T.
,
Coletti
,
F.
,
Bulle
,
J.
,
Vanderwielen
,
T.
, and
Arts
,
T.
,
2011
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels: Part I: Numerical Method
,”
ASME J. Turbomach.
,
135
(
5
), p.
051015
.
35.
Coletti
,
F.
,
Verstraete
,
T.
,
Bulle
,
J.
,
Van der Wielen
,
T.
,
Van den Berge
,
N.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels–Part II: Experimental Validation
,”
ASME J. Turbomach.
,
135
(
5
), p.
051016
.
36.
Han
,
J.
,
Park
,
J. S.
, and
Lei
,
C.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
.
37.
Ames
,
F.
, and
Dvorak
,
L.
,
2006
, “
Turbulent Transport in Pin Fin Arrays: Experimental Data and Predictions
,”
ASME J. Turbomach.
,
128
(
1
), pp.
71
81
.
38.
Otto
,
M.
,
Hodges
,
J.
,
Gupta
,
G.
, and
Kapat
,
J. S.
,
2019
, “
Vortical Structures in Pin Fin Arrays for Turbine Cooling Applications
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
, Vol.
58646
,
American Society of Mechanical Engineers
, p.
V05AT16A003
.
39.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
40.
Pitz
,
R. W.
, and
Daily
,
J. W.
,
1983
, “
Combustion in a Turbulent Mixing Layer Formed at a Rearward-Facing Step
,”
AIAA J.
,
21
(
11
), pp.
1565
1570
.
41.
Metzger
,
D. E.
,
Plevich
,
C. W.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
677
681
.
42.
Kreissl
,
S.
, and
Maute
,
K.
,
2012
, “
Levelset Based Fluid Topology Optimization Using the Extended Finite Element Method
,”
Struct. Multidiscipl. Optim.
,
46
(
3
), pp.
311
326
.
43.
Metzger
,
D. E.
,
Fan
,
Z. X.
, and
Shepard
,
W. B.
,
1982
, “
Pressure Loss and Heat Transfer Through Multiple Rows of Short Pin Fins
,”
Proceedings of the Seventh International Conference
,
Munich, West Germany
,
Sept. 6–10
,
Hemisphere Publishing Corporation
,
Washington, DC
, Volume 3 (A83-42700 20-34), pp.
137
142
.
44.
Elmore
,
M.
,
Fernandez
,
E.
, and
Kapat
,
J.
,
2020
, “
Analysis of Heat Transfer on Turbulence-Generating Ribs Using Dynamic Mode Decomposition
,”
Int. J. Heat Mass Transfer
,
147
, p.
118961
.
45.
Otto
,
M.
,
Gupta
,
G.
,
Tran
,
P. K.
,
Ghosh
,
S.
, and
Kapat
,
J. S.
,
2021
, “
Investigation of Endwall Heat Transfer in Staggered Pin Fin Arrays
,”
ASME J. Turbomach.
,
143
(
2
), p.
021009
.
46.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
47.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
Turbo Expo: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, Vol.
43147
, pp.
1117
1125
.
You do not currently have access to this content.