Abstract

Origami inspired deployable structures have received significant attention due to their exceptional kinematic and mechanical characteristics. Specifically, the cylindrical Kresling origami pattern has been extensively investigated for its multi-stable properties in past studies. This study presents the design and analysis of a novel non-prismatic foldable/deployable truss module inspired from the conical Kresling origami pattern. The intrinsic relationship between the kinematics and mechanics of non-prismatic foldable truss (NPFT) modules is investigated. First, the geometric design and the analytical modeling of the motion behavior of NPFT modules are presented, followed by the development of design maps considering a range of design parameters to demarcate the domains of qualitatively different deployment behavior. The numerical simulations were performed to validate the findings of analytical investigations. Later, the comparative analysis is presented to highlight the advancements of the proposed NPFT modules over conical Kresling truss structures. The programability of the deployment characteristics of NPFT modules is investigated considering different design parameters and the influence of scaling. The outcomes demonstrate that the proposed design of NPFT modules offers enhanced deployable and tunable properties along with ease of manufacturing for reconfigurable truss structures.

References

1.
Cai
,
J.
,
Zhang
,
Q.
,
Feng
,
J.
, and
Xu
,
Y.
,
2019
, “
Modeling and Kinematic Path Selection of Retractable Kirigami Roof Structures: Path Selection of Retractable Kirigami Roof Structures
,”
Comput. Aided Civil Infrastruct. Eng.
,
34
(
4
), pp.
352
363
.
2.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
3.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
230
(
14
), pp.
2345
2362
.
4.
Luo
,
M.
,
Yan
,
R.
,
Wan
,
Z.
,
Qin
,
Y.
,
Santoso
,
J.
,
Skorina
,
E. H.
, and
Onal
,
C. D.
,
2018
, “
OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
1993
1999
.
5.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.
6.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Robot.
,
3
(
22
), p.
eaah5228
.
7.
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Polymeric Containers for Encapsulation and Delivery of Drugs
,”
Adv. Drug Deliv. Rev.
,
64
(
14
), pp.
1579
1589
.
8.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
9.
Anachkova
,
M.
,
Gavriloski
,
V.
, and
Jovanova
,
J.
,
2019
, “
Bio-Inspired and Origami Engineering Approaches for Project Based Learning Mechatronics
,”
2nd International Scientific Conference MILCON'19
,
Skopje, Republic of Macedonia
,
Nov. 1
2, pp.
80
87
.
10.
Zirbel
,
S. A.
,
Trease
,
B. P.
,
Thomson
,
M. W.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. H.
,
2015
, “HanaFlex: A Large Solar Array for Space Applications,”
Proceedings Volume 9467, Micro- and Nanotechnology Sensors, Systems, and Applications VII
,
T.
George
,
A. K.
Dutta
, and
M. S.
Islam
, eds.,
Baltimore, MD
, p.
94671C
.
11.
Wilson
,
L.
,
Pellegrino
,
S.
, and
Danner
,
R.
,
2013
, “
Origami Sunshield Concepts for Space Telescopes
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
,
American Institute of Aeronautics and Astronautics
, p. 1594.
12.
Schenk
,
M.
,
Viquerat
,
A. D.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
,”
J. Spacecr. Rockets
,
51
(
3
), pp.
762
778
.
13.
Thrall
,
A. P.
, and
Quaglia
,
C. P.
,
2014
, “
Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the US Military
,”
Eng. Struct.
,
59
, pp.
686
692
.
14.
Chen
,
Y.
, and
Feng
,
J.
,
2012
, “
Folding of a Type of Deployable Origami Structures
,”
Int. J. Str. Stab. Dyn.
,
12
(
6
), p.
1250054
.
15.
Martínez-Martín
,
F. J.
, and
Thrall
,
A. P.
,
2014
, “
Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency
,”
Eng. Struct.
,
69
, pp.
158
167
.
16.
Chen
,
Y.
,
Lv
,
W.
,
Li
,
J.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
17.
Tachi
,
T.
,
2009
, “
One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels
,”
Symposium of the International Association for Shell and Spatial Structures (50th.). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings
,
Valencia, Spain
, Universitat Politécnica de Valéncia.
18.
Jia
,
G.
,
Huang
,
H.
,
Guo
,
H.
,
Li
,
B.
, and
Dai
,
J. S.
,
2021
, “
Design of Transformable Hinged Ori-Block Dissected From Cylinders and Cones
,”
ASME J. Mech. Des.
,
143
(
9
), p.
094501
.
19.
Cao
,
W.
, and
Cheng
,
P.
,
2022
, “
Design and Kinematic Analysis of a Novel Deployable Antenna Mechanism for Synthetic Aperture Radar Satellites
,”
ASME J. Mech. Des.
,
144
(
11
), p.
114502
.
20.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
21.
Wang
,
J.
,
Kong
,
X.
, and
Yu
,
J.
,
2022
, “
Design of Deployable Mechanisms Based on Wren Parallel Mechanism Units
,”
ASME J. Mech. Des.
,
144
(
6
), p.
063302
.
22.
Senda
,
K.
,
Ohta
,
S.
,
Igarashi
,
Y.
,
Watanabe
,
A.
,
Hori
,
T.
,
Ito
,
H.
,
Tsunoda
,
H.
, and
Watanabe
,
K.
,
2006
,
Deploy Experiment of Inflatable Tube Using Work Hardening
,
American Institute of Aeronautics and Astronautics
,
Newport, RI
.
23.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth’s Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-Ori
,”
Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures
, Abel, J. F., and Robert Cooke, J.,
Cornell University
,
Ithaca, NY
,
May 28–31
, pp.
12
32
.
24.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
25.
Bernardes
,
E.
, and
Viollet
,
S.
,
2022
, “
Design of an Origami Bendy Straw for Robotic Multistable Structures
,”
ASME J. Mech. Des.
,
144
(
3
), p.
033301
.
26.
Chen
,
Y.
,
Lu
,
C.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Intelligent Computational Design of Scalene-Faceted Flat-Foldable Tessellations
,”
J. Comput. Des. Eng.
,
9
(
5
), pp.
1765
1774
.
27.
Zhang
,
P.
,
Fan
,
W.
,
Chen
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Structural Symmetry Recognition in Planar Structures Using Convolutional Neural Networks
,”
Eng. Struct.
,
260
, p.
114227
.
28.
Chen
,
Y.
,
Fan
,
L.
,
Bai
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2020
, “
Assigning Mountain-Valley Fold Lines of Flat-Foldable Origami Patterns Based on Graph Theory and Mixed-Integer Linear Programming
,”
Comput. Struct.
,
239
, p.
106328
.
29.
Feng
,
H.
,
Ma
,
J.
,
Chen
,
Y.
, and
You
,
Z.
,
2018
, “
Twist of Tubular Mechanical Metamaterials Based on Waterbomb Origami
,”
Sci. Rep.
,
8
(
1
), p.
9522
.
30.
Du
,
Y.
,
Keller
,
T.
,
Song
,
C.
,
Xiao
,
Z.
,
Wu
,
L.
, and
Xiong
,
J.
,
2021
, “
Design and Foldability of Miura-Based Cylindrical Origami Structures
,”
Thin-Walled Struct.
,
159
, p.
107311
.
31.
Cai
,
J.
,
Deng
,
X.
,
Zhou
,
Y.
,
Feng
,
J.
, and
Tu
,
Y.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
.
32.
Li
,
Z.
,
Kidambi
,
N.
,
Wang
,
L.
, and
Wang
,
K.-W.
,
2020
, “
Uncovering Rotational Multifunctionalities of Coupled Kresling Modular Structures
,”
Extreme Mech. Lett.
,
39
, p.
100795
.
33.
Sharma
,
H.
, and
Upadhyay
,
S. H.
,
2023
, “
Geometric Design and Deployment Behavior of Origami Inspired Conical Structures
,”
Mech. Des. Struct. Mach.
,
51
(
1
), pp.
1
25
.
34.
Sharma
,
H.
, and
Upadhyay
,
S. H.
,
2022
, “
Deployable Toroidal Structures Based on Modified Kresling Pattern
,”
Mech. Mach. Theory
,
176
, p.
104972
.
35.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2019
, “
Equilibria and Bifurcations of a Foldable Paper-Based Spring Inspired by Kresling-Pattern Origami
,”
Phys. Rev. E
,
100
(
6
), p.
063001
.
36.
Barker
,
R. J. P.
, and
Guest
,
S. D.
,
2000
, “Inflatable Triangulated Cylinders,”
IUTAM-IASS Symposium on Deployable Structures: Theory and Applications
,
S.
Pellegrino
, and
S. D.
Guest
, eds.,
Springer
,
Dordrecht
, pp.
17
26
.
37.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031015
.
38.
Han
,
H.
,
Sorokin
,
V.
,
Tang
,
L.
, and
Cao
,
D.
,
2022
, “
Lightweight Origami Isolators With Deployable Mechanism and Quasi-Zero-Stiffness Property
,”
Aerosp. Sci. Technol.
,
121
, p.
107319
.
39.
Xu
,
Z.-L.
,
Wang
,
D.-F.
,
Tachi
,
T.
, and
Chuang
,
K.-C.
,
2022
, “
An Origami Longitudinal–Torsional Wave Converter
,”
Extreme Mech. Lett.
,
51
, p.
101570
.
40.
Bhovad
,
P.
,
Kaufmann
,
J.
, and
Li
,
S.
,
2019
, “
Peristaltic Locomotion Without Digital Controllers: Exploiting Multi-Stability in Origami to Coordinate Robotic Motion
,”
Extreme Mech. Lett.
,
32
, p.
100552
.
41.
Kaufmann
,
J.
,
Bhovad
,
P.
, and
Li
,
S.
,
2022
, “
Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms
,”
Soft Robot.
,
9
(
2
), pp.
212
223
.
42.
Li
,
J.
,
Chen
,
Y.
,
Feng
,
X.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Computational Modeling and Energy Absorption Behavior of Thin-Walled Tubes With the Kresling Origami Pattern
,”
J. Int. Assoc. Shell Spat. Struct.
,
62
(
2
), pp.
71
81
.
43.
Sharma
,
H.
, and
Upadhyay
,
S. H.
,
2021
, “
Folding Pattern Design and Deformation Behavior of Origami Based Conical Structures
,”
Adv. Space Res.
,
67
(
7
), pp.
2058
2076
.
44.
Sharma
,
H.
, and
Upadhyay
,
S. H.
,
2022
, “
Geometric Analyses and Experimental Characterization of Toroidal Miura-Ori Structures
,”
Thin-Walled Struct.
,
181
, p.
110141
.
You do not currently have access to this content.