Abstract

In engineering applications of sampling-based reliability-based design optimization (RBDO), the Monte Carlo simulation (MCS) using a surrogate model of the performance function is mainly used for the probability of failure calculation and sensitivity analysis. However, if an inaccurate surrogate model is used, the calculation result using MCS will also be inaccurate, so it is essential to improve the accuracy of the surrogate model using sequential sampling. Hence, various sampling-based RBDO methods and sequential sampling methods have been proposed and used in various fields, and space mapping may also be a new framework for sequential sampling. In this paper, sampling-based RBDO with the Gaussian process regression (GPR) and space mapping is proposed. Space mapping generally attempts to utilize high-fidelity samples to update the low-fidelity model in multi-fidelity model conditions. However, in the proposed method, it is used for sequential sampling to improve the accuracy of the existing surrogate model. The major advantage of the proposed space mapping-based RBDO is that the existing surrogate model and the finally updated surrogate model can be formulated with simple matrix and vector calculations. In particular, when there is only a surrogate model that has been built due to the loss of existing sample information since the space mapping updates the model, the accuracy of the surrogate model can be improved by sequential sampling. The proposed method is compared with sequential sampling-based RBDO using GPR, and the calculation accuracy and efficiency are demonstrated through a 2D highly nonlinear example and an engineering problem.

References

1.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
2.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
3.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
.
4.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
366
.
5.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100912
.
6.
Park
,
J. W.
, and
Lee
,
I.
,
2018
, “
A Study on Computational Efficiency Improvement of Novel SORM Using the Convolution Integration
,”
ASME J. Mech. Des.
,
140
(
2
), p.
024501
.
7.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
1992
2019
.
8.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probabilistic Eng. Mech.
,
19
(
4
), pp.
393
408
.
9.
Kang
,
S. B.
,
Park
,
J. W.
, and
Lee
,
I.
,
2017
, “
Accuracy Improvement of the Most Probable Point-Based Dimension Reduction Method Using the Hessian Matrix
,”
Int. J. Numer. Methods Eng.
,
111
(
3
), pp.
203
217
.
10.
Park
,
J. W.
,
Cho
,
H.
, and
Lee
,
I.
,
2020
, “
Selective Dimension Reduction Method (DRM) to Enhance Accuracy and Efficiency of Most Probable Point (MPP)–Based DRM
,”
Struct. Multidiscipl. Optim.
,
61
(
3
), pp.
999
1010
.
11.
Enevoldsen
,
I.
, and
Sørensen
,
J. D.
,
1994
, “
Reliability-Based Optimization in Structural Engineering
,”
Struct. Saf.
,
15
(
3
), pp.
169
196
.
12.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscipl. Optim.
,
26
(
3
), pp.
272
283
.
13.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
.
14.
Valdebenito
,
M. A.
, and
Schuëller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-Based Optimization
,”
Struct. Multidiscipl. Optim.
,
42
(
5
), pp.
645
663
.
15.
Moustapha
,
M.
, and
Sudret
,
B.
,
2019
, “
Surrogate-Assisted Reliability-Based Design Optimization: A Survey and a Unified Modular Framework
,”
Struct. Multidiscipl. Optim.
,
60
(
5
), pp.
2157
2176
.
16.
Acar
,
E.
,
Bayrak
,
G.
,
Jung
,
Y.
,
Lee
,
I.
,
Ramu
,
P.
, and
Ravichandran
,
S. S.
,
2021
, “
Modeling, Analysis, and Optimization Under Uncertainties: A Review
,”
Struct. Multidiscipl. Optim.
,
64
(
5
), pp.
2909
2945
.
17.
Foschi
,
R. O.
,
Li
,
H.
, and
Zhang
,
J.
,
2002
, “
Reliability and Performance-Based Design: A Computational Approach and Applications
,”
Struct. Saf.
,
24
(
2–4
), pp.
205
218
.
18.
Lehký
,
D.
,
Slowik
,
O.
, and
Novák
,
D.
,
2018
, “
Reliability-Based Design: Artificial Neural Networks and Double-Loop Reliability-Based Optimization Approaches
,”
Adv. Eng. Software
,
117
, pp.
123
135
.
19.
Agarwal
,
H.
, and
Renaud
,
J.
,
2004
, “
Reliability Based Design Optimization Using Response Surfaces in Application to Multidisciplinary Systems
,”
Eng. Optim.
,
36
(
3
), pp.
291
311
.
20.
Chen
,
Z.
,
Peng
,
S.
,
Li
,
X.
,
Qiu
,
H.
,
Xiong
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2015
, “
An Important Boundary Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscipl. Optim.
,
52
(
1
), pp.
55
70
.
21.
Li
,
G.
,
Meng
,
Z.
, and
Hu
,
H.
,
2015
, “
An Adaptive Hybrid Approach for Reliability-Based Design Optimization
,”
Struct. Multidiscipl. Optim.
,
51
(
5
), pp.
1051
1065
.
22.
Zhang
,
J.
,
Taflanidis
,
A. A.
, and
Medina
,
J. C.
,
2017
, “
Sequential Approximate Optimization for Design Under Uncertainty Problems Utilizing Kriging Metamodeling in Augmented Input Space
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
369
395
.
23.
Gao
,
T.
, and
Li
,
J.
,
2017
, “
A Derivative-Free Trust-Region Algorithm for Reliability-Based Optimization
,”
Struct. Multidiscipl. Optim.
,
55
(
4
), pp.
1535
1539
.
24.
Gaspar
,
B.
,
Teixeira
,
A. P.
, and
Soares
,
C. G.
,
2017
, “
Adaptive Surrogate Model With Active Refinement Combining Kriging and a Trust Region Method
,”
Reliab. Eng. Syst. Saf.
,
165
, pp.
277
291
.
25.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2015
, “
Sequential Optimization and Reliability Assessment Based on Dimension Reduction Method for Accurate and Efficient Reliability-Based Design Optimization
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1349
1354
.
26.
Hu
,
Z.
, and
Du
,
X.
,
2019
, “
Efficient Reliability-Based Design With Second Order Approximations
,”
Eng. Optim.
,
51
(
1
), pp.
101
119
.
27.
He
,
W.
,
Yang
,
H.
,
Zhao
,
G.
,
Zeng
,
Y.
, and
Li
,
G.
,
2021
, “
A Quantile-Based SORA Method Using Maximum Entropy Method With Fractional Moments
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041702
.
28.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
1
345
.
29.
Melchers
,
R. E.
,
1989
, “
Importance Sampling in Structural Systems
,”
Struct. Saf.
,
6
(
1
), pp.
3
10
.
30.
Cronin
,
J. J.
, Jr.
, and
Taylor
,
S. A.
,
1992
, “
Measuring Service Quality: A Reexamination and Extension
,”
J. Mark.
,
56
(
3
), pp.
55
68
.
31.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2016
, “Review of Multi-Fidelity Models,” arXiv preprint arXiv: 1609.07196
.
32.
Giselle Fernández-Godino
,
M.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2019
, “
Issues in Deciding Whether to Use Multifidelity Surrogates
,”
AIAA J.
,
57
(
5
), pp.
2039
2054
.
33.
Bandler
,
J. W.
,
Biernacki
,
R. M.
,
Chen
,
S. H.
,
Grobelny
,
P. A.
, and
Hemmers
,
R. H.
,
1994
, “
Space Mapping Technique for Electromagnetic Optimization
,”
IEEE Trans. Microwave Theory Tech.
,
42
(
12
), pp.
2536
2544
.
34.
Bakr
,
M. H.
,
Bandler
,
J. W.
,
Biernacki
,
R. M.
,
Chen
,
S. H.
, and
Madsen
,
K.
,
1998
, “
A Trust Region Aggressive Space Mapping Algorithm for EM Optimization
,”
IEEE Trans. Microwave Theory Tech.
,
46
(
12
), pp.
2412
2425
.
35.
Bandler
,
J. W.
,
Cheng
,
Q. S.
,
Dakroury
,
S. A.
,
Mohamed
,
A. S.
,
Bakr
,
M. H.
,
Madsen
,
K.
, and
Sondergaard
,
J.
,
2004
, “
Space Mapping: The State of the Art
,”
IEEE Trans. Microwave Theory Tech.
,
52
(
1
), pp.
337
361
.
36.
Koziel
,
S.
,
Bandler
,
J. W.
, and
Cheng
,
Q. S.
,
2010
, “
Robust Trust-Region Space-Mapping Algorithms for Microwave Design Optimization
,”
IEEE Trans. Microwave Theory Tech.
,
58
(
8
), pp.
2166
2174
.
37.
Redhe
,
M.
, and
Nilsson
,
L.
,
2002
, “
Using Space Mapping and Surrogate Models to Optimize Vehicle Crashworthiness Design
,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
,
Sept. 4–6
, p.
5536
.
38.
Florentie
,
L.
,
Blom
,
D. S.
,
Scholcz
,
T. P.
,
van Zuijlen
,
A. H.
, and
Bijl
,
H.
,
2016
, “
Analysis of Space Mapping Algorithms for Application to Partitioned Fluid–Structure Interaction Problems
,”
Int. J. Numer. Methods Eng.
,
105
(
2
), pp.
138
160
.
39.
Shuai
,
W.
,
Li
,
E.
,
Wang
,
H.
, and
Li
,
Y.
,
2020
, “
Space Mapping-Assisted Optimization of a Thin-Walled Honeycomb Structure for Battery Packaging
,”
Struct. Multidiscipl. Optim.
,
62
(
2
), pp.
937
955
.
40.
Rasmussen
,
C. E.
,
2003
, “Gaussian Processes in Machine Learning,”
Advanced Lectures on Machine Learning. Lecture Notes in Computer Science
,
O.
Bousquet
,
U.
von Luxburg
, and
G.
Rätsch
eds., Vol. 3176,
Springer
,
Berlin/Heidelberg
, pp.
63
71
.
41.
Broyden
,
C. G.
,
1965
, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
,
19
(
92
), pp.
577
593
.
42.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
.
43.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
44.
Suter
,
C.
,
Jovanovic
,
Z. R.
, and
Steinfeld
,
A.
,
2012
, “
A 1 kWe Thermoelectric Stack for Geothermal Power Generation–Modeling and Geometrical Optimization
,”
Appl. Energy
,
99
, pp.
379
385
.
45.
He
,
W.
,
Zhang
,
G.
,
Zhang
,
X.
,
Ji
,
J.
,
Li
,
G.
, and
Zhao
,
X.
,
2015
, “
Recent Development and Application of Thermoelectric Generator and Cooler
,”
Appl. Energy
,
143
, pp.
1
25
.
46.
Luo
,
D.
,
Wang
,
R.
, and
Yu
,
W.
,
2019
, “
Comparison and Parametric Study of Two Theoretical Modeling Approaches Based on an Air-to-Water Thermoelectric Generator System
,”
J. Power Sources
,
439
, p.
227069
.
47.
Lee
,
U.
,
Park
,
S.
, and
Lee
,
I.
,
2020
, “
Robust Design Optimization (RDO) of Thermoelectric Generator System Using Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
,”
Energy
,
196
, p.
117090
.
48.
Ji
,
D.
,
Hu
,
S.
,
Feng
,
Y.
,
Qin
,
J.
,
Yin
,
Z.
,
Romagnoli
,
A.
,
Zhao
,
J.
, and
Qian
,
H.
,
2021
, “
Geometry Optimization of Solar Thermoelectric Generator Under Different Operating Conditions Via Taguchi Method
,”
Energy Convers. Manage.
,
238
, p.
114158
.
You do not currently have access to this content.