Abstract

Designers should adequately develop user considerations such as usability, safety, and comfort during the design process of new systems. Nevertheless, incorporating human factors engineering principles during early design phases is not simple. The objective of this work is to assist designers in implementing human factors engineering principles during early design phases using a functional model framework. This effort expands our previous work on automating the function-human error design method (FHEDM) implementation. In this work, we use data mining techniques in a design repository to explore the construction of association rules between components, functions, flows, and user interactions. Such association rules can support designers assessing user-system interactions during the early design stages. To validate this approach, we compare the associations generated by expert designers using the FHEDM while designing a new product to those generated by an algorithm using the repository data. The results show notable similarities between the associations extracted by the algorithm and the associations identified by designers. Thus, the overall results show that association rules extracted from a rich dataset can be used to distinguish user-product interactions, demonstrating the potential of automating the identification of user-product interactions from a functional model.

References

1.
Desurvire
,
H.
, and
Thomas
,
J. C.
,
1993
, “
Enhancing the Performance of Interface Evaluators Using Non-Empirical Usability Methods
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
, Vol.
37
,
SAGE Publications
,
Los Angeles, CA
, pp.
1132
1136
.
2.
Nielsen
,
J.
,
1994
,
Usability Engineering
,
Morgan Kaufmann
,
San Francisco, CA
.
3.
Village
,
J.
,
Searcy
,
C.
,
Salustri
,
F.
, and
Patrick Neumann
,
W.
,
2015
, “
Design for Human Factors (DFHF): A Grounded Theory for Integrating Human Factors Into Production Design Processes
,”
Ergonomics
,
58
(
9
), pp.
1529
1546
.
4.
Wickens
,
C. D.
,
Gordon
,
S. E.
,
Liu
,
Y.
, and
Lee
,
J.
,
2004
,
An Introduction to Human Factors Engineering
, Vol.
2
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
5.
Irshad
,
L.
,
Demirel
,
H. O.
, and
Tumer
,
I. Y.
,
2020
, “
Automated Generation of Fault Scenarios to Assess Potential Human Errors and Functional Failures in Early Design Stages
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051009
.
6.
Irshad
,
L.
,
Hulse
,
D.
,
Demirel
,
H. O.
,
Tumer
,
I. Y.
, and
Jensen
,
D. C.
,
2021
, “
Quantifying the Combined Effects of Human Errors and Component Failures
,”
ASME J. Mech. Des.
,
143
(
10
), p.
101703
.
7.
Demirel
,
H. O.
, and
Duffy
,
V. G.
,
2013
, “
A Sustainable Human Centered Design Framework Based on Human Factors
,”
International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management
,
Las Vegas, NV
,
July 21–26
, Springer, pp.
307
315
.
8.
Demirel
,
H. O.
,
Irshad
,
L.
,
Ahmed
,
S.
, and
Tumer
,
I. Y.
,
2021
, “
Digital Human-in-the-Loop Methodology for Early Design Computational Human Factors
,”
International Conference on Human–Computer Interaction
,
Virtual Conference
,
July 4–29
, Springer, pp.
14
31
.
9.
Boy
,
G. A.
,
2017
,
The Handbook of Human–Machine Interaction: A Human-Centered Design Approach
,
CRC Press
,
Boca Raton, FL
.
10.
Embrey
,
D.
,
1986
, “
Sherpa: A Systematic Human Error Reduction and Prediction Approach
,”
Proceedings of the International Topical Meeting on Advances in Human Factors in Nuclear Power Systems.
,
Knoxville, TN
,
Apr. 21–24
.
11.
Hughes
,
C. M.
,
Baber
,
C.
,
Bienkiewicz
,
M.
,
Worthington
,
A.
,
Hazell
,
A.
, and
Hermsdörfer
,
J.
,
2015
, “
The Application of Sherpa (Systematic Human Error Reduction and Prediction Approach) in the Development of Compensatory Cognitive Rehabilitation Strategies for Stroke Patients With Left and Right Brain Damage
,”
Ergonomics
,
58
(
1
), pp.
75
95
.
12.
Zurita
,
N. F. S.
,
Stone
,
R. B.
,
Demirel
,
O.
, and
Tumer
,
I. Y.
,
2018
, “
The Function-Human Error Design Method (FHEDM)
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Paper No. V007T06A058.
13.
Irshad
,
L.
,
Hulse
,
D.
,
Demirel
,
H. O.
,
Tumer
,
I. Y.
, and
Jensen
,
D. C.
,
2020
, “
Introducing Likelihood of Occurrence and Expected Cost to Human Error and Functional Failure Reasoning Framework
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
83976
,
American Society of Mechanical Engineers
, Paper No. V008T08A031.
14.
Irshad
,
L.
,
Ahmed
,
S.
,
Demirel
,
O.
, and
Tumer
,
I. Y.
,
2019
, “
Coupling Digital Human Modeling With Early Design Stage Human Error Analysis to Assess Ergonomic Vulnerabilities
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
2349
.
15.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
16.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
17.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2010
, “
Form Follows Form: Fine Tuning Artificial Intelligence Methods
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, Vol. 44113, pp.
519
528
.
18.
Nagel
,
R. L.
,
Vucovich
,
J. P.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2008
, “
A Signal Grammar to Guide Functional Modeling of Electromechanical Products
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051101
.
19.
Kurfman
,
M. A.
,
Stock
,
M. E.
,
Stone
,
R. B.
,
Rajan
,
J.
, and
Wood
,
K. L.
,
2003
, “
Experimental Studies Assessing the Repeatability of a Functional Modeling Derivation Method
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
682
693
.
20.
Szykman
,
S.
,
Sriram
,
R. D.
,
Bochenek
,
C.
,
Racz
,
J. W.
, and
Senfaute
,
J.
,
2000
, “
Design Repositories: Engineering Design’s New Knowledge Base
,”
IEEE Intell. Syst. Appl.
,
15
(
3
), pp.
48
55
.
21.
Tensa
,
M.
,
Edmonds
,
K.
,
Ferrero
,
V.
,
Mikes
,
A.
,
Zurita
,
N. S.
,
Stone
,
R.
, and
DuPont
,
B.
,
2019
, “
Toward Automated Functional Modeling: An Association Rules Approach for Mining the Relationship Between Product Components and Function
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, Vol. 1, Cambridge University Press, pp.
1713
1722
.
22.
Soria Zurita
,
N. F.
,
Tensa
,
M. A.
,
Ferrero
,
V.
,
Stone
,
R. B.
,
DuPont
,
B.
,
Demirel
,
H. O.
, and
Tumer
,
I. Y.
,
2019
, “
An Association Rule Approach for Identifying Physical System-User Interactions and Potential Human Errors Using a Design Repository
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
59278
,
American Society of Mechanical Engineers
, Paper No. V007T06A003.
23.
Ferrero
,
V.
,
Hassani
,
K.
,
Grandi
,
D.
, and
DuPont
,
B.
,
2021
, “
Classifying Component Function in Product Assemblies With Graph Neural Networks
,”
arXiv
https://arxiv.org/abs/2107.07042
24.
Edmonds
,
K.
,
Mikes
,
A.
,
DuPont
,
B.
, and
Stone
,
R. B.
,
2020
, “
A Weighted Confidence Metric to Improve Automated Functional Modeling
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
84003
,
American Society of Mechanical Engineers
, Paper No. V11AT11A017.
25.
Mikes
,
A.
,
Edmonds
,
K.
,
Stone
,
R. B.
, and
DuPont
,
B.
,
2021
, “
Autofunc: A Python Package for Automating and Verifying Functional Modeling
,”
J. Open Source Softw.
,
6
(
58
), p.
2362
.
26.
Soria Zurita
,
N. F.
,
Stone
,
R. B.
,
Onan Demirel
,
H.
, and
Tumer
,
I. Y.
,
2020
, “
Identification of Human–System Interaction Errors During Early Design Stages Using a Functional Basis Framework
,”
ASCE–ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
1
), p.
011005
.
27.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2004
, “
Product Design Support: Exploring a Design Repository System
,”
ASME International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
,
Nov. 13–19
, Vol. 47047, pp.
55
65
.
28.
Szykman
,
S.
,
Sriram
,
R.
,
Bochenek
,
C.
,
Racz
,
J.
, and
Senfaute
,
J.
,
2000
, “
Design Repositories: Engineering Design’s New Knowledge Base
,”
IEEE Intell. Syst.
,
15
(
3
), pp.
48
55
.
29.
Ferrero
,
V. J.
,
Alqseer
,
N.
,
Tensa
,
M.
, and
DuPont
,
B.
,
2020
, “
Using Decision Trees Supported by Data Mining to Improve Function-Based Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
84003
,
American Society of Mechanical Engineers
, Paper No. V11AT11A018.
30.
Mikes
,
A.
,
Edmonds
,
K.
,
Stone
,
R. B.
, and
DuPont
,
B.
,
2020
, “
Optimizing an Algorithm for Data Mining a Design Repository to Automate Functional Modeling
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
84003
,
American Society of Mechanical Engineers
, Paper No. V11AT11A014.
31.
Bohm
,
M. R.
,
Stone
,
R. B.
,
Simpson
,
T. W.
, and
Steva
,
E. D.
,
2008
, “
Introduction of a Data Schema to Support a Design Repository
,”
Comput.-Aided Des.
,
40
(
7
), pp.
801
811
.
32.
Phelan
,
K.
,
Wilson
,
C.
, and
Summers
,
J. D.
,
2014
, “
Development of a Design for Manufacturing Rules Database for Use in Instruction of DFM Practices
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
46285
,
American Society of Mechanical Engineers
, Paper No. V01AT02A054.
33.
Szykman
,
S.
,
Sriram
,
R. D.
,
Bochenek
,
C.
, and
Racz
,
J.
,
1999
, “
The NIST Design Repository Project
,”
Advances in Soft Computing
,
On-line
,
June 1998
.
34.
Oman
,
S.
,
Gilchrist
,
B.
,
Tumer
,
I. Y.
, and
Stone
,
R.
,
2014
, “
The Development of a Repository of Innovative Products (RIP) for Inspiration in Engineering Design
,”
Int. J. Des. Creativity Innovation
,
2
(
4
), pp.
186
202
.
35.
Ferrero
,
V.
,
Wisthoff
,
A.
,
Huynh
,
T.
,
Ross
,
D.
, and
DuPont
,
B.
,
2017
, “
A Sustainable Design Repository for Influencing the Eco-Design of New Consumer Products
,”
engrXiv
.
36.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.
37.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
38.
Wisthoff
,
A.
,
Ferrero
,
V.
,
Huynh
,
T.
, and
DuPont
,
B.
,
2016
, “
Quantifying the Impact of Sustainable Product Design Decisions in the Early Design Phase Through Machine Learning
,”
Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
,
ASME
, Paper No. V004T05A043.
39.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
40.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
,
2005
, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
4
), p.
360
.
41.
Rajagopalan
,
V.
,
Bryant
,
C. R.
,
Johnson
,
J.
,
McAdams
,
D. A.
,
Stone
,
R. B.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
Creation of Assembly Models to Support Automated Concept Generation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, Vol. 4742, pp.
259
266
.
42.
Bryant
,
C. R.
,
McAdams
,
D. A.
,
Stone
,
R. B.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
A Computational Technique for Concept Generation
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
267
276
.
43.
Bryant
,
C. R.
,
McAdams
,
D. A.
,
Stone
,
R. B.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2006
, “
A Validation Study of an Automated Concept Generator Design Tool
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, Vol. 42584, pp.
283
294
.
44.
Gilchrist
,
B. P.
,
Tumer
,
I. Y.
,
Stone
,
R. B.
,
Gao
,
Q.
, and
Haapala
,
K. R.
,
2012
, “
Comparison of Environmental Impacts of Innovative and Common Products
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
825
834
.
45.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.
46.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
Using Quantitative Functional Models to Develop Product Architectures
,”
Des. Stud.
,
21
(
3
), pp.
239
260
.
47.
Caldwell
,
B. W.
,
Sen
,
C.
,
Mocko
,
G. M.
,
Summers
,
J. D.
, and
Fadel
,
G. M.
,
2008
, “
Empirical Examination of the Functional Basis and Design Repository
,”
Design Computing and Cognition’08
,
Atlanta, GA
,
June
, pp.
261
280
.
48.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Evaluation of the Functional Basis Using an Information Theoretic Approach
,”
AI EDAM
,
24
(
1
), pp.
87
105
. doi:10.1017/S0890060409990187
49.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2010
, “
Adapting ADA Architectural Design Knowledge to Product Design: Groundwork for a Function Based Approach
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
185
200
.
50.
Sangelkar
,
S.
,
Cowen
,
N.
, and
McAdams
,
D.
,
2012
, “
User Activity–product Function Association Based Design Rules for Universal Products
,”
Des. Stud.
,
33
(
1
), pp.
85
110
.
51.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2011
, “
Formalizing User Activity–Product Function Association Based Design Rules for Universal Products
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
.
52.
Sangelkar
,
S.
, and
Mcadams
,
D. A.
,
2012
, “
Creating Actionfunction Diagrams for User Centric Design
,”
2012 ASEE Annual Conference & Exposition
,
San Antonio, TX
,
June 10
.
53.
World Health Organization
,
2001
,
International Classification of Functioning, Disability and Health: ICF
,
World Health Organization
,
Switzerland
.
54.
Feyyad
,
U.
,
1996
, “
Data Mining and Knowledge Discovery: Making Sense Out of Data
,”
IEEE Expert
,
11
(
5
), pp.
20
25
.
55.
Maimon
,
O.
, and
Rokach
,
L.
,
2009
,
Data Mining and Knowledge Discovery Handbook
, Vol.
Introduction to Knowledge Discovery and Data Mining
,
Springer
,
Boston, MA.
56.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2009
, “
Data-Driven Decision Tree Classification for Product Portfolio Design Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041004
.
57.
Bae
,
J. K.
, and
Kim
,
J.
,
2011
, “
Product Development With Data Mining Techniques: A Case on Design of Digital Camera
,”
Expert Syst. Appl.
,
38
(
8
), pp.
9274
9280
.
58.
Zhan
,
Y.
,
Tan
,
K. H.
, and
Huo
,
B.
,
2019
, “
Bridging Customer Knowledge to Innovative Product Development: A Data Mining Approach
,”
Int. J. Prod. Res.
,
57
(
20
), pp.
6335
6350
.
59.
Piatetsky-Shapiro
,
G.
,
1991
, “
Discovery, Analysis, and Presentation of Strong Rules
,”
Knowledge Discovery in Databases
, pp.
229
238
. NII Article ID (NAID) 10000000985
60.
Liao
,
S.-H.
, and
Wen
,
C.-H.
,
2009
, “
Mining Demand Chain Knowledge for New Product Development and Marketing
,”
IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.)
,
39
(
2
), pp.
223
227
.
61.
Orlando
,
S.
,
Palmerini
,
P.
, and
Perego
,
R.
,
2001
, “Enhancing the Apriori Algorithm for Frequent Set Counting,”
Data Warehousing Knowledge Discovery. Lecture Notes in Computer Science
, vol. 2114,
Springer
,
Berlin/Heidelberg
, pp.
71
82
.
62.
Sun
,
K.
, and
Bai
,
F.
,
2008
, “
Mining Weighted Association Rules Without Preassigned Weights
,”
IEEE Trans. Knowl. Data Eng.
,
20
(
4
), pp.
489
495
.
63.
Bohm
,
Matt R.
, and
Stone
,
Robert B.
,
2009
, “
A Natural Language to Component Term Methodology: Towards a Form Based Concept Generation Tool
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
1341
1350
.
64.
Agrawal
,
R.
,
Imieliński
,
T.
,
Swami
,
A.
,
Agrawal
,
R.
,
Imieliński
,
T.
, and
Swami
,
A.
,
1993
, “
Mining Association Rules Between Sets of Items in Large Databases
,”
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data – SIGMOD ’93
,
Washington, DC
,
May 25–28
, ACM Press, pp.
207
216
.
65.
Brin
,
S.
,
Motwani
,
R.
,
Ullman
,
J. D.
, and
Tsur
,
S.
,
1997
, “
Dynamic Itemset Counting and Implication Rules for Market Basket Data
,”
Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data
,
Tucson, AZ
,
May 11–15
, pp.
255
264
.
66.
Agrawal
,
R.
, and
Srikant
,
R.
,
1994
, “
Fast Algorithms for Mining Association Rules
,”
Proceedings of the 20th International Conference Very Large Data Bases VLDB
,
Santiago de Chile, Chile
,
Sept. 12–15
, Vol. 1215, pp.
487
499
.
67.
Schneidert
,
M.
,
Hurst
,
R.
,
Miller
,
J.
, and
Üstün
,
B.
,
2003
, “
The Role of Environment in the International Classification of Functioning, Disability and Health (ICF)
,”
Disability Rehab.
,
25
(
11–12
), pp.
588
595
.
68.
Helmreich
,
R. L.
, and
Merritt
,
A. C.
,
1998
,
National, Organizational and Professional Influences
, Vol.
Culture at Work in Aviation and Medicine
,
Routledge
,
London, UK
.
69.
Konz
,
S.
, and
Johnson
,
S.
,
2004
,
Work Design: Occupational Ergonomics
,
Holcomb Hathaway Publishers
,
Boca Raton, FL
.
70.
Wickens
,
C. D.
, and
Carswell
,
C. M.
,
2012
,
Handbook of Human Factors and Ergonomics. Chapter 5. Information Processing
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, p.
117
.
71.
Sailer
,
K.
,
Pomeroy
,
R.
, and
Haslem
,
R.
,
2015
, “
Data-Driven Design—Using Data on Human Behaviour and Spatial Configuration to Inform Better Workplace Design
,”
Corporate Real Estate J.
,
4
(
3
), pp.
249
262
. ISSN (print): 2043-9148 ; ISSN (web): 2043-9156
72.
Borgelt
,
C.
,
2012
, “
Frequent Item Set Mining
,”
Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
,
2
(
6
), pp.
437
456
.
73.
Ahmed
,
S.
, and
Wallace
,
K.
,
2003
, “
Evaluating a Functional Basis
,”
Proceedings of the Design Theory and Methodology, International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
ASME
,
Chigaco, IL
, DTM-48685.
You do not currently have access to this content.