Abstract

The design of cleaning and maintenance (CaM) robots is generally limited by their fixed morphologies, resulting in limited functions and modes of operation. Contrary to fixed shape robots, the design of reconfigurable robots presents unique challenges in designing their system, subsystems, and functionalities with the scope for innovative operational scenarios and achieving high performance in multiple modalities without compromise. This paper proposes a heuristic framework using three layers, namely input, formulation, and output layer, for designing reconfigurable robots with the aid of established transformation principles including expand/collapse, expose/cover, and fuse/divide observed in several products, services, and systems. We apply this heuristic framework approach to the novel design of a pavement CaM robotic system and subsystems, namely, (i) varying footprint, (ii) transmission, (iii) outer skin or cover, (iv) storage bin, (v) surface cleaning, and (vi) vacuum/suction and blowing. The advances in the design method using the heuristic approach are demonstrated by developing an innovative reconfigurable design for the CaM task. Kinematic analysis and control architecture enables the unique locomotion behavior and gaits, namely, (a) static reconfiguration and (b) reconfiguration while locomotion, supported by the control architecture. Experiments were conducted, and outcomes were discussed along with the failure mode analysis to support the design robustness and limitations through the observations made from the development to testing phase over one year. A detailed video demonstrating the design capabilities is linked.

References

1.
Siddiqi
,
A.
, and
de Weck
,
O. L.
,
2008
, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
,
130
(
10
), p.
101102
.
2.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
3.
Weaver
,
J.
,
Wood
,
K.
,
Crawford
,
R.
, and
Jensen
,
D.
,
2010
, “
Transformation Design Theory: A Meta-Analogical Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031012
.
4.
Lauff
,
C.
,
Wee
,
Y.
,
Amanda
,
S.
,
Png
,
S.
, and
Kristin Lee
,
W.
,
2021
,
Design Innovation (DI) Methodology Handbook
, 1st ed.,
Singapore University of Technology and Design, Massachusetts Institute of Technology, International Design Centre SUTD-MIT IDC
,
Singapore
.
5.
Yilmaz
,
S.
,
Seifert
,
C.
,
Daly
,
S. R.
, and
Gonzalez
,
R.
,
2016
, “
Design Heuristics in Innovative Products
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071102
.
6.
Tan
,
N.
,
Hayat
,
A. A.
,
Elara
,
M. R.
, and
Wood
,
K. L.
,
2020
, “
A Framework for Taxonomy and Evaluation of Self-Reconfigurable Robotic Systems
,”
IEEE Access
,
8
(
1
), pp.
13969
13986
.
7.
Kee
,
V.
,
Rojas
,
N.
,
Elara
,
M. R.
, and
Sosa
,
R.
,
2014
, “
Hinged-Tetro: A Self-Reconfigurable Module for Nested Reconfiguration
,”
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
IEEE
, pp.
1539
1546
.
8.
Prabakaran
,
V.
,
Elara
,
M. R.
,
Pathmakumar
,
T.
, and
Nansai
,
S.
,
2017
, “
htetro: A Tetris Inspired Shape Shifting Floor Cleaning Robot
,”
IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
6105
6112
.
9.
Hayat
,
A. A.
,
Karthikeyan
,
P.
,
Vega-Heredia
,
M.
, and
Elara
,
M. R.
,
2019
, “
Modeling and Assessing of Self-Reconfigurable Cleaning Robot Htetro Based on Energy Consumption
,”
Energies
,
12
(
21
), pp.
4112
4131
.
10.
Forlizzi
,
J.
, and
DiSalvo
,
C.
,
2006
, “
Service Robots in the Domestic Environment: A Study of the Roomba Vacuum in the Home
,”
Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction
, pp.
258
265
.
11.
Vega-Heredia
,
M.
,
Mohan
,
R. E.
,
Wen
,
T. Y.
,
Siti’Aisyah
,
J.
,
Vengadesh
,
A.
,
Ghanta
,
S.
, and
Vinu
,
S.
,
2019
, “
Design and Modelling of a Modular Window Cleaning Robot
,”
Auto. Construct.
,
103
(
1
), pp.
268
278
.
12.
Lv
,
X.
,
2020
,
Glass-Wiping Robot
, Aug. 13. US Patent App. 16/863, 887.
13.
Hayat
,
A. A.
,
Elangovan
,
K.
,
Rajesh Elara
,
M.
, and
Teja
,
M. S.
,
2019
, “
Tarantula: Design, Modeling, and Kinematic Identification of a Quadruped Wheeled Robot
,”
Appl. Sci.
,
9
(
1
), pp.
94
115
.
14.
Parween
,
R.
,
Hayat
,
A. A.
,
Elangovan
,
K.
,
Apuroop
,
K. G. S.
,
Heredia
,
M. V.
, and
Elara
,
M. R.
,
2020
, “
Design of a Self-Reconfigurable Drain Mapping Robot With Level-Shifting Capability
,”
IEEE Access
,
8
(
1
), pp.
113429
113442
.
15.
Yanagida
,
T.
,
Elara Mohan
,
R.
,
Pathmakumar
,
T.
,
Elangovan
,
K.
, and
Iwase
,
M.
,
2017
, “
Design and Implementation of a Shape Shifting Rolling-Crawling-Wall-Climbing Robot
,”
Appl. Sci.
,
7
(
4
), pp.
342
361
.
16.
Hayat
,
A. A.
,
Parween
,
R.
,
Elara
,
M. R.
,
Parsuraman
,
K.
, and
Kandasamy
,
P. S.
,
2019
, “
Panthera: Design of a Reconfigurable Pavement Sweeping Robot
,”
International Conference on Robotics and Automation (ICRA)
,
Montreal, Quebec, Canada
,
May 20–24 May
, IEEE, pp.
7346
7352
.
17.
Chen
,
W.
,
Rosen
,
D.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1994
, “
Modularity and the Independence of Functional Requirements in Designing Complex Systems
,”
Concurrent Product Design
,
74
, pp.
31
38
.
18.
Park
,
G. J.
,
2007
,
Analytic Methods for Design Practice
, 1st ed.,
Springer Science & Business Media
,
London
.
19.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
.
21.
Trombiafree- Battery-Powered Sweeping Machine
, https://trombia.com/free/, Accessed December 25, 2021.
22.
Kilin
,
A.
,
Bozek
,
P.
,
Karavaev
,
Y.
,
Klekovkin
,
A.
, and
Shestakov
,
V.
,
2017
, “
Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot
,”
Int. J. Adv. Rob. Syst.
,
14
(
6
), pp.
1729
1744
.
23.
Taheri
,
H.
,
Qiao
,
B.
, and
Ghaeminezhad
,
N.
,
2015
, “
Kinematic Model of a Four Mecanum Wheeled Mobile Robot
,”
Int. J. Comput. Appl.
,
113
(
3
), pp.
6
9
.
24.
Alakshendra
,
V.
, and
Chiddarwar
,
S. S.
,
2017
, “
Adaptive Robust Control of Mecanum-Wheeled Mobile Robot With Uncertainties
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2147
2169
.
25.
Holmberg
,
R.
, and
Khatib
,
O.
,
2000
, “
Development and Control of a Holonomic Mobile Robot for Mobile Manipulation Tasks
,”
Int. J. Rob. Res.
,
19
(
11
), pp.
1066
1074
.
26.
Jahanian
,
O.
, and
Karimi
,
G.
,
2006
, “
Locomotion Systems in Robotic Application
,” 2006 IEEE International Conference on Robotics and Biomimetics,
IEEE
, pp.
689
696
.
27.
Angeles
,
J.
,
2005
, “
An Innovative Drive for Wheeled Mobile Robots
,”
IEEE/ASME Trans. Mech.
,
10
(
1
), pp.
43
49
.
28.
Watanabe
,
K.
,
Shiraishi
,
Y.
,
Tzafestas
,
S. G.
,
Tang
,
J.
, and
Fukuda
,
T.
,
1998
, “
Feedback Control of An Omnidirectional Autonomous Platform for Mobile Service Robots
,”
J. Intell. Rob. Syst.
,
22
(
3–4
), pp.
315
330
.
29.
Lee
,
Y.
,
Park
,
S.
, and
Lee
,
M.
,
1998
, “
Pid Controller Tuning to Obtain Desired Closed Loop Responses for Cascade Control Systems
,”
Ind. Eng. Chem. Res.
,
37
(
5
), pp.
1859
1865
.
30.
Wang
,
L.
,
2020
,
PID Control System Design and Automatic Tuning Using MATLAB/Simulink
, 1st ed.,
John Wiley & Sons
,
New York
.
31.
Xu
,
F.
,
Liu
,
X.
,
Chen
,
W.
, and
Zhou
,
C.
,
2019
, “
Dynamic Switch Control of Steering Modes for Four Wheel Independent Steering Rescue Vehicle
,”
IEEE Access
,
7
(
1
), pp.
135595
135605
.
32.
Marino
,
R.
,
Scalzi
,
S.
,
Orlando
,
G.
, and
Netto
,
M.
,
2009
, “
A Nested Pid Steering Control for Lane Keeping in Vision Based Autonomous Vehicles
,” 2009 American Control Conference,
IEEE
, pp.
2885
2890
.
33.
Tun
,
T. T.
,
Huang
,
L.
,
Mohan
,
R. E.
, and
Matthew
,
S. G. H.
,
2019
, “
Four-wheel Steering and Driving Mechanism for a Reconfigurable Floor Cleaning Robot
,”
Auto. Construct.
,
106
(
1
), p.
102796
.
34.
Chen
,
W.
, and
Ahmed
,
F.
,
2020
, “
PaDGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
35.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowledge-Based Syst.
,
218
(
1
), p.
106873
.
36.
Weaver
,
J. M.
,
Wood
,
K. L.
, and
Jensen
,
D.
,
2008
, “
Transformation Facilitators: a Quantitative Analysis of Reconfigurable Products and Their Characteristics
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
43253
, pp.
351
366
.
37.
Luca
,
L.
, and
Popescu
,
I.
,
2012
, “
Generation of Aesthetic Surfaces Through Trammel Mechanism
,”
Fiabilit. Durabilit. (Fiability & Durability)
,
1
(
1
), pp.
55
61
.
38.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2012
,
Matrix Computations
, 4th ed.,
JHU Press
,
Baltimore, MD
.
39.
Siegwart
,
R.
,
Nourbakhsh
,
I. R.
, and
Scaramuzza
,
D.
,
2011
,
Introduction to Autonomous Mobile Robots
, 2nd ed.,
MIT Press
,
Cambridge, MA
.
40.
Le
,
A. V.
,
Hayat
,
A. A.
,
Elara
,
M. R.
,
Nhan
,
N. H. K.
, and
Prathap
,
K.
,
2019
, “
Reconfigurable Pavement Sweeping Robot and Pedestrian Cohabitant Framework by Vision Techniques
,”
IEEE Access
,
7
, p.
159402
.
41.
Kidd
,
J. R.
,
Pe
,
S.
,
Eren
,
F.
, and
Armstrong
,
A.
,
2016
, “
Performance Evaluation of the Velodyne VLP-16 System for Surface Feature Surveying
,”
Canadian Hydrographic Conference
,
Halifax, Canada
,
May 16–19
.
You do not currently have access to this content.