Abstract

Origami is the art of creating a three-dimensional (3D) shape by folding paper. It has drawn much attention from researchers, and the designs that origami has inspired are used in various engineering applications. Most of these designs are based on familiar origami patterns and their known deformations, but origami patterns were originally intended for materials of near-zero thickness, primarily paper. To use the designs in engineering applications, it is necessary to simulate origami in a way that enables designers to explore and understand the designs while taking the thickness of the material to be folded into account. Because origami is primarily a problem in geometric design, this paper develops a geometric simulation for thick origami. The actuation, constraints, and assignment of mountain and valley folds in origami are also incorporated into the geometric formulation. The experimental results show that the proposed method is efficient and accurate. The method can successfully simulate a flat-foldable degree-four vertex, two different action origami, the bistable property of a waterbomb base, and the elasticity of non-rigid origami panels.

References

1.
Demaine
,
E. D.
, and
O’Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
Cambridge, UK
.
2.
Tachi
,
T.
,
2010
, “
Freeform Variations of Origami
,”
J. Geo. Graph.
,
14
(
2
), pp.
203
215
.
3.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
. 10.1115/1.4039314
4.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
. 10.1126/science.aab2870
5.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidily Foldable Origami
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, p. V05BT08A054.
6.
Walker
,
M. G.
, and
Seffen
,
K. A.
,
2019
, “
The Flexural Mechanics of Creased Thin Strips
,”
Int. J. Solids. Struct.
,
167
, pp.
192
201
. 10.1016/j.ijsolstr.2019.03.016
7.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Akleman
,
E.
, and
Lagoudas
,
D. C.
,
SPM 2016
, “
Modeling and Analysis of Origami Structures With Smooth Folds
,”
Comput.-Aid. Des.
,
78
, pp.
93
106
2016
8.
Kwok
,
T. H.
, and
Chen
,
Y.
,
2017
, “
GDFE: Geometry-Driven Finite Element for Four-dimensional Printing
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
11
), p.
111006
. 10.1115/1.4037429
9.
Kwok
,
T.-H.
,
2019
, “
Geometric Simulation for Thick Origami
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, p.
V05BT07A022
, Vol.
5B
.
10.
Bowen
,
L.
,
Springsteen
,
K.
,
Ahmed
,
S.
,
Arrojado
,
E.
,
Frecker
,
M.
,
Simpson
,
T. W.
,
Ounaies
,
Z.
, and
von Lockette
,
P.
,
2017
, “
Design, Fabrication, and Modeling of An Electric-Magnetic Self-Folding Sheet
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021012
. 10.1115/1.4035966
11.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: a Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Materials and Structures
,
23
(
9
), p.
094009
. 10.1088/0964-1726/23/9/094009
12.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Folding Flat Crease Patterns With Thick Materials
,”
J. Mech. Robot.
,
8
(
3
), p.
031003
. 10.1115/1.4031954
13.
Cao
,
Y.
,
2017
,
Rigid Origami of Thick Panels and Deployable Membranes
,
University of Oxford
,
Oxford, UK
.
14.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
. 10.1103/PhysRevLett.110.215501
15.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model for Simulating Bistability in Origami Structures With Compliant Creases
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021110
. 10.1115/1.4045955
16.
Ghassaei
,
A. P.
,
Demaine
,
E. D.
, and
Gershenfeld
,
N.
,
2018
, “
Fast, Interactive Origami Simulation Using Gpu Computation
,”
Origami7: Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education
,
Oxford, UK
,
Sept. 5–7
.
17.
Kwok
,
T.-H.
,
Wang
,
C. C. L.
,
Deng
,
D.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2015
, “
Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111413
. 10.1115/1.4031023
18.
Gattas
,
J. M.
, and
You
,
Z.
,
2015
, “
The Behaviour of Curved-Crease Foldcores Under Low-Velocity Impact Loads
,”
Int. J. Solids. Struct.
,
53
, pp.
80
91
. 10.1016/j.ijsolstr.2014.10.019
19.
Tachi
,
T.
,
2006
, “
Simulation of Rigid Origami
,”
in Origami4: Proceedings of the 4th International Meeting on Origami in Science, Mathematics and Education
,
Pasadena, CA
,
Sept. 8–10
.
20.
Stark
,
J.
, and
Kalantar
,
N.
,
2018
, An overview of fabrication techniques for single-Assembly folding structures. Technical Report, Texas A&M University, 06.
21.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
22.
Pehrson
,
N. A.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2016
, “
Introduction of Monolithic Origami With Thick-Sheet Materials
,”
Proceedings of IASS Annual Symposia
,
2016
(
13
), pp.
1
10
.
23.
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME. J. Mech. Robot.
,
7
(
1
), p.
011009
. 10.1115/1.4029325
24.
Butler
,
J.
,
Pehrson
,
N.
, and
Magleby
,
S.
,
2019
, “
Folding of Thick Origami Through Regionally Sandwiched Compliant Sheets
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011019
. 10.1115/1.4045248
25.
Chao
,
I.
,
Pinkall
,
U.
,
Sanan
,
P.
, and
Schröder
,
P.
,
2010
, “
A Simple Geometric Model for Elastic Deformations
,”
ACM Trans. Graph.
,
29
(
4
), pp.
38:1
38:6
. 10.1145/1778765.1778775
26.
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
An Origami-Based Thickness-Accommodating Bistable Mechanism in Monolithic Thick-sheet Materials
,”
IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
, pp.
1
7
.
27.
Saito
,
K.
,
Tsukahara
,
A.
, and
Okabe
,
Y.
,
2016
, “
Designing of Self-Deploying Origami Structures Using Geometrically Misaligned Crease Patterns
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
472
(
2185
), p.
20150235
.
28.
Liu
,
K.
, and
Paulino
,
G. H.
,
2017
, “
Nonlinear Mechanics of Non-rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2206
), p.
20170348
.
29.
Butler
,
J.
,
Bowen
,
L.
,
Wilcox
,
E.
,
Shrager
,
A.
,
Frecker
,
M. I.
,
von Lockette
,
P.
,
Simpson
,
T. W.
,
Lang
,
R. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2018
, “
A Model for Multi-Input Mechanical Advantage in Origami-Based Mechanisms
,”
ASME. J. Mech. Robot.
,
10
(
6
), p.
061007
. 10.1115/1.4041199
30.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 16–18
, p. V001T01A027.
31.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2019
, “
An Efficient Numerical Approach for Simulating Contact in Origami Assemblages
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
475
(
2230
), p.
20190366
.
32.
Walker
,
M. G.
,
2020
, “
Mechanics of Generically Creased Disks
,”
Phys. Rev. E
,
101
(
4
), p.
043001
. 10.1103/PhysRevE.101.043001
33.
Walker
,
M. G.
, and
Seffen
,
K. A.
,
2018
, “
On the Shape of Bistable Creased Strips
,”
Thin-Walled Structures
,
124
, pp.
538
545
. 10.1016/j.tws.2017.12.033
You do not currently have access to this content.