Abstract

Multi-fidelity surrogate model-based engineering optimization has received much attention because it alleviates the computational burdens of expensive simulations or experiments. However, due to the nonlinearity of practical engineering problems, the initial sample set selected to produce the first set of data will almost inevitably miss certain features of the landscape, and thus, the construction of a useful surrogate often requires further, judicious infilling of some new samples. Sequential sampling strategies used to select new infilling samples during each iteration can gradually extend the data set and improve the accuracy of the initial model with an acceptable cost. In this paper, a sequential sampling generation method based on the Voronoi region and the sample density (SSGM-VRDS) is proposed. First, with a Monte Carlo-based approximation of a Voronoi tessellation for region division, Pearson correlation coefficients and cross-validation (CV) are employed to determine the candidate Voronoi region for infilling a new sample. Then, a relative sample density is defined to identify the position of the new infilling point at which the sample is the sparsest within the selected Voronoi region. A correction of this density is carried out concurrently through an expansion coefficient. The proposed method is applied to three numerical functions and a lightweight design problem via finite element analysis (FEA). Results suggest that the SSGM-VRDS strategy has outstanding effectiveness and efficiency in selecting a new sample for improving the accuracy of a surrogate model, as well as practicality for solving practical optimization problems.

References

1.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
2.
Jung
,
Y.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
.
3.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
DBLP
.
4.
Tao
,
S.
,
van Beek
,
A.
,
Apley
,
D.
, and
Chen
,
W.
,
2021
, “
Multi-Model Bayesian Optimization for Simulation-Based Design
,”
ASME J. Mech. Des.
,
143
(
11
), p.
111701
.
5.
Kuya
,
Y.
,
Takeda
,
K.
,
Zhang
,
X.
, and
Forrester
,
A. I.
,
2011
, “
Multifidelity Surrogate Modeling of Experimental and Computational Aerodynamic Data Sets
,”
AIAA J.
,
49
(
2
), pp.
289
298
.
6.
Zhu
,
P.
,
Pan
,
F.
,
Chen
,
W.
, and
Viana
,
F. A.
,
2013
, “
Lightweight Design of Vehicle Parameters Under Crashworthiness Using Conservative Surrogates
,”
Comput. Ind.
,
64
(
3
), pp.
280
289
.
7.
Han
,
Z. H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
8.
van Beek
,
A.
,
Tao
,
S.
,
Plumlee
,
M.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2020
, “
Integration of Normative Decision-Making and Batch Sampling for Global Metamodeling
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031114
.
9.
Hao
,
P.
,
Wang
,
B.
, and
Li
,
G.
,
2012
, “
Surrogate-Based Optimum Design for Stiffened Shells With Adaptive Sampling
,”
AIAA J.
,
50
(
11
), pp.
2389
2407
.
10.
Zheng
,
J.
,
Shao
,
X.
,
Gao
,
L.
,
Jiang
,
P.
, and
Li
,
Z.
,
2013
, “
A Hybrid Variable-Fidelity Global Approximation Modelling Method Combining Tuned Radial Basis Function Base and Kriging Correction
,”
J. Eng. Des.
,
24
(
8
), pp.
604
622
.
11.
Guo
,
Z.
,
Song
,
L.
,
Park
,
C.
,
Li
,
J.
, and
Haftka
,
R. T.
,
2018
, “
Analysis of Dataset Selection for Multi-fidelity Surrogates for a Turbine Problem
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2127
2142
.
12.
Zhang
,
Y.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2020
, “
General-Surrogate Adaptive Sampling Using Interquartile Range for Design Space Exploration
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051402
.
13.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
4944
4952
.
14.
Zheng
,
J.
,
Qiu
,
H. B.
, and
Zhang
,
X. L.
,
2012
, “
Variable-Fidelity Multidisciplinary Design Optimization Based on Analytical Target Cascading Framework
,”
Adv. Mater. Res.
,
544
, pp.
49
54
.
15.
Viana
,
F. A.
,
Simpson
,
T. W.
,
Balabanov
,
V.
, and
Toropov
,
V.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?
AIAA J.
,
52
(
4
), pp.
670
690
.
16.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscipl. Optim.
,
60
(
3
), pp.
965
981
.
17.
Liem
,
R. P.
,
Mader
,
C. A.
, and
Martins
,
J. R.
,
2015
, “
Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Aircraft Mission Analysis
,”
Aerosp. Sci. Technol.
,
43
, pp.
126
151
.
18.
Xu
,
C.
,
Zhu
,
P.
, and
Liu
,
Z.
,
2021
, “
Sequential Sampling Framework for Metamodeling Uncertainty Reduction in Multilevel Optimization of Hierarchical Systems
,”
ASME J. Mech. Des.
,
143
(
10
), p.
101701
.
19.
Tang
,
Y.
,
Long
,
T.
,
Shi
,
R.
,
Wu
,
Y.
, and
Gary Wang
,
G.
,
2020
, “
Sequential Radial Basis Function-Based Optimization Method Using Virtual Sample Generation
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111701
.
20.
Zhu
,
P.
,
Shi
,
L.
,
Yang
,
R. J.
, and
Lin
,
S. P.
,
2015
, “
A New Sampling-Based RBDO Method via Score Function With Reweighting Scheme and Application to Vehicle Designs
,”
Appl. Math. Model.
,
39
(
15
), pp.
4243
4256
.
21.
Xu
,
S.
,
Liu
,
H.
,
Wang
,
X.
, and
Jiang
,
X.
,
2014
, “
A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071009
.
22.
Kaminsky
,
A. L.
,
Wang
,
Y.
, and
Pant
,
K.
,
2021
, “
An Efficient Batch k-Fold Cross-Validation Voronoi Adaptive Sampling Technique for Global Surrogate Modeling
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011706
.
23.
Lv
,
L.
,
Shi
,
M.
,
Song
,
X.
,
Sun
,
W.
, and
Zhang
,
J.
,
2020
, “
A Fast-Converging Ensemble Infilling Approach Balancing Global Exploration and Local Exploitation: The Go-Inspired Hybrid Infilling Strategy
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021403
.
24.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscipl. Optim.
,
32
(
5
), pp.
369
382
.
25.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K. L.
,
2008
, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
ASME J. Mech. Des.
,
130
(
11
), p.
111401
.
26.
Hu
,
J.
,
Zhou
,
Q.
,
Jiang
,
P.
,
Shao
,
X.
, and
Xie
,
T.
,
2018
, “
An Adaptive Sampling Method for Variable-Fidelity Surrogate Models Using Improved Hierarchical Kriging
,”
Eng. Optim.
,
50
(
1
), pp.
145
163
.
27.
Hao
,
P.
,
Feng
,
S.
,
Li
,
Y.
,
Wang
,
B.
, and
Chen
,
H.
,
2020
, “
Adaptive Infill Sampling Criterion for Multi-fidelity Gradient-Enhanced Kriging Model
,”
Struct. Multidiscipl. Optim.
, pp.
1
21
.
28.
Yi
,
J.
,
Wu
,
F.
,
Zhou
,
Q.
,
Cheng
,
Y.
,
Ling
,
H.
, and
Liu
,
J.
,
2021
, “
An Active-Learning Method Based on Multi-fidelity Kriging Model for Structural Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
173
195
.
29.
Liu
,
Y.
,
Chen
,
S.
,
Wang
,
F.
, and
Xiong
,
F.
,
2018
, “
Sequential Optimization Using Multi-level Cokriging and Extended Expected Improvement Criterion
,”
Struct. Multidiscipl. Optim.
,
58
(
3
), pp.
1155
1173
.
30.
Reisenthel
,
P. H.
, and
Allen
,
T. T.
,
2014
, “
Application of Multifidelity Expected Improvement Algorithms to Aeroelastic Design Optimization
,”
Proceedings of 10th AIAA Multidisciplinary Design Optimization Conference
,
National Harbor, MD
,
January
, p.
1490
.
31.
Zhang
,
Y.
,
Han
,
Z. H.
, and
Zhang
,
K. S.
,
2018
, “
Variable-Fidelity Expected Improvement Method for Efficient Global Optimization of Expensive Functions
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1431
1451
.
32.
Le Gratiet
,
L.
, and
Cannamela
,
C.
,
2015
, “
Cokriging-Based Sequential Design Strategies Using Fast Cross-Validation Techniques for Multi-fidelity Computer Codes
,”
Technometrics
,
57
(
3
), pp.
418
427
.
33.
Liu
,
Y.
,
Shi
,
Y.
,
Zhou
,
Q.
, and
Xiu
,
R.
,
2016
, “
A Sequential Sampling Strategy to Improve the Global Fidelity of Metamodels in Multi-level System Design
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1295
1313
.
34.
Lv
,
L.
,
Zong
,
C.
,
Zhang
,
C.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
Multi-Fidelity Surrogate Model Based on Canonical Correlation Analysis and Least Squares
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021705
.
35.
Parussini
,
L.
,
Venturi
,
D.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Multi-fidelity Gaussian Process Regression for Prediction of Random Fields
,”
J. Comput. Phys.
,
336
, pp.
36
50
.
36.
Kwon
,
H. I.
,
Yi
,
S.
,
Choi
,
S.
, and
Kim
,
K.
,
2015
, “
Design of Efficient Propellers Using Variable-Fidelity Aerodynamic Analysis and Multilevel Optimization
,”
J. Propul. Power
,
31
(
4
), pp.
1057
1072
.
37.
Simpson
,
T.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F.
,
2008
, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of how far we Have Come-or Not
,”
Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Victoria, British Columbia Canada
,
September
, p.
5802
.
38.
Yamazaki
,
W.
, and
Mavriplis
,
D. J.
,
2013
, “
Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions
,”
AIAA J.
,
51
(
1
), pp.
126
137
.
39.
Mullins
,
J.
, and
Mahadevan
,
S.
,
2014
, “
Variable-Fidelity Model Selection for Stochastic Simulation
,”
Reliab. Eng. Syst. Saf.
,
131
, pp.
40
52
.
40.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
,
Wei
,
L.
, and
Shao
,
X.
,
2017
, “
Adaptive Radial-Basis-Function-Based Multifidelity Metamodeling for Expensive Black-Box Problems
,”
AIAA J.
,
55
(
7
), pp.
2424
2436
.
41.
Zhou
,
Q.
,
Shao
,
X.
,
Jiang
,
P.
,
Gao
,
Z.
,
Wang
,
C.
, and
Shu
,
L.
,
2016
, “
An Active Learning Metamodeling Approach by Sequentially Exploiting Difference Information From Variable-Fidelity Models
,”
Adv. Eng. Inform.
,
30
(
3
), pp.
283
297
.
You do not currently have access to this content.