Abstract

Acting as an important internal excitation, sliding friction can cause the vibration and noise of the planetary gear set. In this paper, a dynamic model is developed to study the influence of sliding friction on the dynamic characteristics of the planetary gear set by including the time-varying mesh stiffness (TVMS), sliding friction forces and torques. An improved analytical model is proposed to calculate the TVMS with sliding friction. The explicit analytical expressions of the sliding friction forces and torques are also derived. Three kinds of different models are applied to investigate the influence of sliding friction: (1) the basic model: sliding friction is neglected in the dynamic model; (2) the improved model I: only the sliding friction forces and torques are considered in the dynamic model; and (3) the improved model II: both the influence of sliding friction on the TVMS and the sliding friction forces and torques are introduced into the dynamic model. The planetary gear set with three equally spaced planet gears is applied to analyze the dynamic characteristics under sliding friction. The simulation results show that the dynamic characteristics can be enhanced or disturbed by sliding friction. In the end, the dynamic model is validated by the experiments. Therefore, the influence of sliding friction is non-negligible when investigating the dynamic characteristics of the planetary gear set. The developed dynamic model provides a feasible dynamic research scheme for the planetary gear set with sliding friction.

References

1.
Liang
,
X.
,
Zuo
,
M. J.
, and
Hoseini
,
M. R.
,
2015
, “
Vibration Signal Modeling of a Planetary Gear Set for Tooth Crack Detection
,”
Eng. Failure Anal.
,
48
, pp.
185
200
. 10.1016/j.engfailanal.2014.11.015
2.
Qiao
,
B.
,
Liu
,
J.
,
Liu
,
J.
,
Yang
,
Z.
, and
Chen
,
X.
,
2019
, “
An Enhanced Sparse Regularization Method for Impact Force Identification
,”
Mech. Syst. Signal Process.
,
126
, pp.
341
367
. 10.1016/j.ymssp.2019.02.039
3.
Yang
,
L.
,
Chen
,
X.
, and
Wang
,
S.
,
2018
, “
A Novel Amplitude-Independent Crack Identification Method for Rotating Shaft
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
22
), pp.
4098
4112
. 10.1177/0954406217748686
4.
Ouyang
,
T.
,
Huang
,
G.
,
Chen
,
J.
,
Gao
,
B.
, and
Chen
,
N.
,
2019
, “
Investigation of Lubricating and Dynamic Performances for High-Speed Spur Gear Based on Tribo-Dynamic Theory
,”
Tribol. Int.
,
136
, pp.
421
431
. 10.1016/j.triboint.2019.03.009
5.
Ouyang
,
T.
,
Huang
,
H.
,
Zhou
,
X.
,
Pan
,
M.
,
Chen
,
N.
, and
Lv
,
D.
,
2018
, “
A Finite Line Contact Tribo-Dynamic Model of a Spur Gear Pair
,”
Tribol. Int.
,
119
, pp.
753
765
. 10.1016/j.triboint.2017.12.010
6.
Ouyang
,
T.
,
Huang
,
H.
,
Zhang
,
N.
,
Mo
,
C.
, and
Chen
,
N.
,
2017
, “
A Model to Predict Tribo-Dynamic Performance of a Spur Gear Pair
,”
Tribol. Int.
,
116
, pp.
449
459
. 10.1016/j.triboint.2017.08.005
7.
Guerine
,
A.
,
El Hami
,
A.
,
Walha
,
L.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2018
, “
Dynamic Response of a Spur Gear System With Uncertain Friction Coefficient
,”
Adv. Eng. Softw.
,
120
, pp.
45
54
. 10.1016/j.advengsoft.2016.05.009
8.
Guerine
,
A.
,
El Hami
,
A.
,
Walha
,
L.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2016
, “
A Polynomial Chaos Method for the Analysis of the Dynamic Behavior of Uncertain Gear Friction System
,”
Eur. J. Mech. A/Solids
,
59
, pp.
76
84
. 10.1016/j.euromechsol.2016.03.007
9.
Li
,
S.
, and
Anisetti
,
A.
,
2017
, “
A Tribo-Dynamic Contact Fatigue Model for Spur Gear Pairs
,”
Int. J. Fatigue
,
98
, pp.
81
91
. 10.1016/j.ijfatigue.2017.01.020
10.
Li
,
S.
, and
Anisetti
,
A.
,
2016
, “
On the Flash Temperature of Gear Contacts Under the Tribo-Dynamic Condition
,”
Tribol. Int.
,
97
, pp.
6
13
. 10.1016/j.triboint.2016.01.027
11.
Li
,
S.
,
2015
, “
A Thermal Tribo-Dynamic Mechanical Power Loss Model for Spur Gear Pairs
,”
Tribol. Int.
,
88
, pp.
170
178
. 10.1016/j.triboint.2015.03.022
12.
Jiang
,
H.
, and
Liu
,
F.
,
2017
, “
Dynamic Modeling and Analysis of Spur Gears Considering Friction–Vibration Interactions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
12
), pp.
4911
4920
. 10.1007/s40430-017-0883-9
13.
Jiang
,
H.
,
Shao
,
Y.
, and
Mechefske
,
C. K.
,
2014
, “
Dynamic Characteristics of Helical Gears Under Sliding Friction With Spalling Defect
,”
Eng. Failure Anal.
,
39
, pp.
92
107
. 10.1016/j.engfailanal.2014.01.008
14.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
(
20
), pp.
4963
4978
. 10.1016/j.jsv.2013.04.022
15.
Liu
,
C.
,
Qin
,
D.
, and
Liao
,
Y.
,
2014
, “
Dynamic Model of Variable Speed Process for Herringbone Gears Including Friction Calculated by Variable Friction Coefficient
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041006
. 10.1115/1.4026572
16.
Chen
,
S.
,
Tang
,
J.
,
Luo
,
C.
, and
Wang
,
Q.
,
2011
, “
Nonlinear Dynamic Characteristics of Geared Rotor Bearing Systems With Dynamic Backlash and Friction
,”
Mech. Mach. Theory
,
46
(
4
), pp.
466
478
. 10.1016/j.mechmachtheory.2010.11.016
17.
Feng
,
Z.
,
Wang
,
S.
,
Lim
,
T. C.
, and
Peng
,
T.
,
2011
, “
Enhanced Friction Model for High-Speed Right-Angle Gear Dynamics
,”
J. Mech. Sci. Technol.
,
25
(
11
), pp.
2741
2753
. 10.1007/s12206-011-0803-3
18.
He
,
S.
,
Cho
,
S.
, and
Singh
,
R.
,
2008
, “
Prediction of Dynamic Friction Forces in Spur Gears Using Alternate Sliding Friction Formulations
,”
J. Sound Vib.
,
309
(
3–5
), pp.
843
851
. 10.1016/j.jsv.2007.06.077
19.
He
,
S.
, and
Singh
,
R.
,
2008
, “
Dynamic Transmission Error Prediction of Helical Gear Pair Under Sliding Friction Using Floquet Theory
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052603
. 10.1115/1.2890115
20.
He
,
S.
,
Rook
,
T.
, and
Singh
,
R.
,
2008
, “
Construction of Semianalytical Solutions to Spur Gear Dynamics Given Periodic Mesh Stiffness and Sliding Friction Functions
,”
ASME J. Mech. Des.
,
130
(
12
), p.
122601
. 10.1115/1.2988478
21.
He
,
S.
,
Gunda
,
R.
, and
Singh
,
R.
,
2007
, “
Effect of Sliding Friction on the Dynamics of Spur Gear Pair With Realistic Time-Varying Stiffness
,”
J. Sound. Vib.
,
301
(
3–5
), pp.
927
949
. 10.1016/j.jsv.2006.10.043
22.
Liu
,
G.
, and
Parker
,
R. G.
,
2009
, “
Impact of Tooth Friction and Its Bending Effect on Gear Dynamics
,”
J. Sound. Vib.
,
320
(
4–5
), pp.
1039
1063
. 10.1016/j.jsv.2008.08.021
23.
Hou
,
S.
,
Wei
,
J.
,
Zhang
,
A.
,
Lim
,
T. C.
, and
Zhang
,
C.
,
2018
, “
Study of Dynamic Model of Helical/Herringbone Planetary Gear System With Friction Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
12
), p.
121007
. 10.1115/1.4041774
24.
Saxena
,
A.
,
Parey
,
A.
, and
Chouksey
,
M.
,
2016
, “
Time Varying Mesh Stiffness Calculation of Spur Gear Pair Considering Sliding Friction and Spalling Defects
,”
Eng. Failure Anal.
,
70
, pp.
200
211
. 10.1016/j.engfailanal.2016.09.003
25.
Saxena
,
A.
,
Parey
,
A.
, and
Chouksey
,
M.
,
2015
, “
Effect of Shaft Misalignment and Friction Force on Time Varying Mesh Stiffness of Spur Gear Pair
,”
Eng. Failure Anal.
,
49
, pp.
79
91
. 10.1016/j.engfailanal.2014.12.020
26.
Han
,
L.
,
Xu
,
L.
, and
Qi
,
H.
,
2017
, “
Influences of Friction and Mesh Misalignment on Time-Varying Mesh Stiffness of Helical Gears
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3121
3130
. 10.1007/s12206-017-0602-6
27.
Ma
,
H.
,
Feng
,
M.
,
Li
,
Z.
,
Feng
,
R.
, and
Wen
,
B.
,
2017
, “
Time-Varying Mesh Characteristics of a Spur Gear Pair Considering the Tip-Fillet and Friction
,”
Meccanica
,
52
(
7
), pp.
1695
1709
. 10.1007/s11012-016-0502-3
28.
Liu
,
W.
,
Shuai
,
Z.
,
Guo
,
Y.
, and
Wang
,
D.
,
2019
, “
Modal Properties of a Two-Stage Planetary Gear System With Sliding Friction and Elastic Continuum Ring Gear
,”
Mech. Mach. Theory
,
135
, pp.
251
270
. 10.1016/j.mechmachtheory.2019.01.026
29.
Parker
,
R. G.
,
2000
, “
A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,”
J. Sound Vib.
,
236
(
4
), pp.
561
573
. 10.1006/jsvi.1999.2859
30.
Guo
,
Y.
,
Keller
,
J.
, and
Parker
,
R. G.
,
2014
, “
Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets Under Gravity Effects
,”
Eur. J. Mech. A/Solids
,
47
, pp.
45
57
. 10.1016/j.euromechsol.2014.02.013
31.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
. 10.1016/j.jsv.2006.11.028
32.
Liang
,
X.
,
Zuo
,
M. J.
, and
Pandey
,
M.
,
2014
, “
Analytically Evaluating the Influence of Crack on the Mesh Stiffness of a Planetary Gear Set
,”
Mech. Mach. Theory
,
76
, pp.
20
38
. 10.1016/j.mechmachtheory.2014.02.001
33.
Cooley
,
C. G.
,
Liu
,
C.
,
Dai
,
X.
, and
Parker
,
R. G.
,
2016
, “
Gear Tooth Mesh Stiffness: A Comparison of Calculation Approaches
,”
Mech. Mach. Theory
,
105
, pp.
540
553
. 10.1016/j.mechmachtheory.2016.07.021
34.
Yang
,
D. C. H.
, and
Sun
,
Z. S.
,
1985
, “
A Rotary Model for Spur Gear Dynamics
,”
J. Xian Univ. Technol.
,
107
(
4
), pp.
529
535
.
35.
Shen
,
Z.
,
Qiao
,
B.
,
Yang
,
L.
,
Luo
,
W.
, and
Chen
,
X.
,
2019
, “
Evaluating the Influence of Tooth Surface Wear on TVMS of Planetary Gear Set
,”
Mech. Mach. Theory
,
136
, pp.
206
223
. 10.1016/j.mechmachtheory.2019.03.014
36.
Parker
,
R. G.
, and
Lin
,
J.
,
2003
, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Sept. 2–6
, pp.
525
534
.
You do not currently have access to this content.