Abstract

The Next Generation NATO Reference Mobility Model (NG-NRMM) plays a vital role in vehicle mobility prediction and mission planning. The complicated vehicle–terrain interactions and the presence of heterogeneous uncertainty sources in the modeling and simulation (M&S) result in epistemic uncertainty/errors in the vehicle mobility prediction for given terrain and soil conditions. In this paper, the uncertainty sources that cause the uncertainty in mobility prediction are first partitioned into two levels, namely uncertainty in the M&S and uncertainty in terrain and soil maps. With a focus on the epistemic uncertainty in the M&S, this paper presents a testing design optimization framework to effectively reduce the uncertainty in the M&S and thus increase the confidence in generating off-road mobility maps. A Bayesian updating approach is developed to reduce the epistemic uncertainty/errors in the M&S using mobility testing data collected under controllable terrain and soil conditions. The updated models are then employed to generate the off-road mobility maps for any given terrain and soil maps. Two types of design strategies, namely testing design for model selection and testing design for uncertainty reduction, are investigated in the testing design framework to maximize the information gain subject to limited resources. Results of a numerical example demonstrate the effectiveness of the proposed mobility testing design optimization framework.

References

1.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2017
, “
The Next Generation NATO Reference Mobility Model Development
,”
J. Terramech.
,
73
(
1
), pp.
49
60
. 10.1016/j.jterra.2017.06.002
2.
Petrick
,
E.
,
Janosi
,
Z.
, and
Haley
,
P.
,
1981
, “
The Use of the NATO Reference Mobility Model in Military Vehicle Procurement
,” SAE Technical Paper No. 0148-7191.
3.
Ciobotaru
,
T.
,
2009
, “
Semi-Empiric Algorithm for Assessment of the Vehicle Mobility
,”
Leonardo Electron. J. Pract. Technol.
,
8
(
15
), pp.
19
30
.
4.
McCullough
,
M.
, and
Haug
,
E.
,
1986
, “
Dynamics of High Mobility Track Vehicles
,”
J. Mech. Trans. Autom. Des.
,
108
(
2
), pp.
189
196
. 10.1115/1.3260801
5.
Bradbury
,
M.
,
Dasch
,
J.
,
Gonzalez
,
R.
,
Hodges
,
H.
,
Jain
,
A.
,
Iagnemma
,
K.
,
Letherwood
,
M.
,
McCullough
,
M.
,
Priddy
,
J.
,
Wojtysiak
,
B.
, and
Wong
,
J.
,
2016
, “Next-Generation NATO Reference Mobility Model (NG-NRMM)”,
ET-148 Next-Generation NATO Reference Mobility Model NATO STO Final Report
,
J.
Dasch
, and
P.
Jayakumar
, eds,
The United States Army Tank Automotive Research, Development and Engineering Center (TARDEC)
,
Warren, MI
.
6.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2016
, “
Developing the Next Generation NATO Reference Mobility Model
,”
2016 NDIA Ground Vehicle Systems Engineering and Technology Symposium
,
Novi, MI
,
Aug. 2–6
.
7.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
A High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramech.
,
72
(
1
), pp.
39
54
. 10.1016/j.jterra.2017.04.002
8.
Serban
,
R.
,
Olsen
,
N.
,
Negrut
,
D.
,
Recuero
,
A.
, and
Jayakumar
,
P.
,
2017
, “
A Co-Simulation Framework for High-Performance, High-Fidelity Simulation of Ground Vehicle-Terrain Interaction
,”
Conference: NATO AVT-265 Specialists’ Meeting
,
Vilnius, Lithuania
,
May 12–19
.
9.
Lessem
,
A.
,
Mason
,
G.
, and
Ahivin
,
R.
,
1996
, “
Stochastic Vehicle Mobility Forecasts Using the NATO Reference Mobility Model
,”
J. Terramech.
,
33
(
6
), pp.
273
280
. 10.1016/S0022-4898(97)00010-4
10.
Priddy
,
J. D.
,
1995
, “
Stochastic Vehicle Mobility Forecasts Using the NATO Reference Mobility Model. Report 3. Database Development for Statistical Analysis of the NRMM II Cross-Country Traction Empirical Relationships
,” Army Engineer Waterways Experiment Station Vicksburg MS Geotechnical Lab, Technical Report GL-95-8.
11.
Lessem
,
A.
,
Ahlvin
,
R.
,
Mason
,
G.
, and
Mlakar
,
P.
,
1992
, “
Stochastic Vehicle Mobility Forecasts Using the NATO Reference Mobility Model. Report 1. Basic Concepts and Procedures
,” Army Engineer Waterways Experiment Station Vicksburg MS Geotechnical Lab, Technical Report GL-92-11.
12.
Choi
,
K.
,
Jayakumar
,
P.
,
Funk
,
M.
,
Gaul
,
N.
, and
Wasfy
,
T. M.
,
2019
, “
Framework of Reliability-Based Stochastic Mobility Map for Next Generation NATO Reference Mobility Model
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021012
. 10.1115/1.4041350
13.
Gonzalez
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Stochastic Mobility Prediction of Ground Vehicles Over Large Spatial Regions: A Geostatistical Approach
,”
Auton. Rob.
,
41
(
2
), pp.
311
331
. 10.1007/s10514-015-9527-z
14.
Gonzalez
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Generation of Stochastic Mobility Maps for Large-Scale Route Planning of Ground Vehicles: A Case Study
,”
J. Terramech.
,
69
(
1
), pp.
1
11
. 10.1016/j.jterra.2016.10.001
15.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
. 10.1007/s00170-017-0703-5
16.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
. 10.1115/1.4041946
17.
Hoyle
,
C.
,
Chen
,
W.
,
Ankenman
,
B.
, and
Wang
,
N.
,
2009
, “
Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071008
. 10.1115/1.3149845
18.
Priddy
,
J. D.
,
1999
, “
Improving the Traction Prediction Capabilities in the NATO Reference Mobility Model (NRMM)
,” Army Engineer Waterways Experiment Station Vicksburg MS Geotechnical Lab, Technical Report GL-99-8.
19.
Jones
,
R. A.
,
Price
,
S. J.
, and
Ahlvin
,
R. B.
,
2004
, “
Mission Level Mobility Analysis of the US Marine Corps HIMARS Vehicles
,” U.S. Army Engineer Research And Development Center, Technical report, ERDC/GSL TR-04-3.
20.
Shoop
,
S.
,
Kestler
,
K.
, and
Haehnel
,
R.
,
2006
, “
Finite Element Modeling of Tires on Snow
,”
Tire Sci. Technol.
,
34
(
1
), pp.
2
37
. 10.2346/1.2169827
21.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
. 10.1115/1.4023925
22.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2019
, “
Probability Models for Data-Driven Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
187
(
1
), pp.
40
57
. 10.1016/j.ress.2018.12.003
23.
Nelson
,
W.
,
1980
, “
Accelerated Life Testing-Step-Stress Models and Data Analyses
,”
IEEE Trans. Reliab.
,
29
(
2
), pp.
103
108
. 10.1109/TR.1980.5220742
24.
Doksum
,
K. A.
, and
Hbyland
,
A.
,
1992
, “
Models for Variable-Stress Accelerated Life Testing Experiments Based on Wener Processes and the Inverse Gaussian Distribution
,”
Technometrics
,
34
(
1
), pp.
74
82
. 10.2307/1269554
25.
Wasfy
,
T.
,
Jayakumar
,
P.
,
Mechergui
,
D.
, and
Sanikommu
,
S.
,
2016
, “
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
,”
2016 NDIA Ground Vehicle Systems Engineering and Technology Symposium
,
Novi, MI
,
Aug. 2–6
.
26.
Hoeting
,
J. A.
,
Madigan
,
D.
,
Raftery
,
A. E.
, and
Volinsky
,
C. T.
,
1999
, “
Bayesian Model Averaging: A Tutorial
,”
Stat. Sci.
,
14
(
4
), pp.
382
401
.
27.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
. 10.1115/1.4007390
28.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071005
. 10.1115/1.4004223
29.
Li
,
W.
,
Chen
,
W.
,
Jiang
,
Z.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2014
, “
New Validation Metrics for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
127
(
1
), pp.
1
11
. 10.1016/j.ress.2014.02.002
30.
Chen
,
S. X.
,
2000
, “
Probability Density Function Estimation Using Gamma Kernels
,”
Ann. Inst. Stat. Math.
,
52
(
3
), pp.
471
480
. 10.1023/A:1004165218295
31.
Zhang
,
R.
, and
Mahadevan
,
S.
,
2000
, “
Model Uncertainty and Bayesian Updating in Reliability-Based Inspection
,”
Struct. Saf.
,
22
(
2
), pp.
145
160
. 10.1016/S0167-4730(00)00005-9
32.
Wasserman
,
L.
,
2000
, “
Bayesian Model Selection and Model Averaging
,”
J. Math. Psychol.
,
44
(
1
), pp.
92
107
. 10.1006/jmps.1999.1278
33.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
. 10.1016/j.engfracmech.2011.02.017
34.
Rebba
,
R.
,
Mahadevan
,
S.
, and
Huang
,
S.
,
2006
, “
Validation and Error Estimation of Computational Models
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1390
1397
. 10.1016/j.ress.2005.11.035
35.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K.-L.
, and
Wang
,
S.
,
2008
, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021101
. 10.1115/1.2809439
36.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Ao
,
D.
,
2018
, “
Uncertainty Aggregation and Reduction in Structure–Material Performance Prediction
,”
Comput. Mech.
,
61
(
1–2
), pp.
237
257
. 10.1007/s00466-017-1448-6
37.
Hu
,
Z.
,
Ao
,
D.
, and
Mahadevan
,
S.
,
2017
, “
Calibration Experimental Design Considering Field Response and Model Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
318
(
1
), pp.
92
119
. 10.1016/j.cma.2017.01.007
38.
Fuglede
,
B.
, and
Topsoe
,
F.
,
2004
, “
Jensen-Shannon Divergence and Hilbert Space Embedding
,”
International Symposium on Information Theory
,
Chicago, IL
,
June 27–July 2
, p.
31
.
39.
Lin
,
J.
,
1991
, “
Divergence Measures Based on the Shannon Entropy
,”
IEEE Trans. Inf. Theory
,
37
(
1
), pp.
145
151
. 10.1109/18.61115
40.
Cover
,
T. M.
, and
Thomas
,
J. A.
,
2012
,
Elements of Information Theory
,
John Wiley & Sons
,
New York
.
41.
Ao
,
D.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Design of Validation Experiments for Life Prediction Models
,”
Reliab. Eng. Syst. Saf.
,
165
(
1
), pp.
22
33
. 10.1016/j.ress.2017.03.030
42.
Ao
,
D.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Dynamics Model Validation Using Time-Domain Metrics
,”
J. Verif., Valid. Uncertainty Quantif.
,
2
(
1
), p.
011004
. 10.1115/1.4036182
You do not currently have access to this content.