Abstract

Increasingly complex engineering design challenges requires the diversification of knowledge required on design teams. In the context of open innovation, positioning key members within these teams or groups based on their estimated abilities leads to more impactful results since mass collaboration is fundamentally a sociotechnical system. Determining how each individual influences the overall design process requires an understanding of the predicted mapping between their technical competency and performance. This work explores this relationship through the use of predictive models composed of various algorithms. With support of a dataset composed of documents related to the design performance of students working on their capstone design project in combination with textual descriptors representing individual technical aptitudes, correlations are explored as a method to predict overall project development performance. Each technical competency and project is represented as a distribution of topic knowledge to produce the performance metrics, which are referred to as topic competencies, since topic representations increase the ability to decompose and identify human-centric performance measures. Three methods of topic identification and five prediction models are compared based on their prediction accuracy. From this analysis, it is found that representing input variables as topics distributions and the resulting performance as a single indicator while using support vector regression provided the most accurate mapping between ability and performance. With these findings, complex open innovation projects will benefit from increased knowledge of individual ability and how that correlates to their predicted performances.

References

1.
Howe
,
J.
,
2006
, “
The Rise of Crowdsourcing
,”
Wired Mag.
,
14
(
6
), pp.
1
4
.
2.
Hofmann
,
T.
,
1999
, “
Probabilistic Latent Semantic Analysis
,”
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
,
Stockholm, Sweden
,
July 30–Aug. 1
,
Morgan Kaufmann Publishers Inc.
, pp.
289
296
.
3.
Xu
,
W.
,
Liu
,
X.
, and
Gong
,
Y.
,
2003
, “
Document Clustering Based on Non-Negative Matrix Factorization
,”
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
,
Toronto, Canada
,
July 28–Aug. 1
,
ACM
, pp.
267
273
.
4.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
(
Jan
), pp.
993
1022
.
5.
Neter
,
J.
,
Kutner
,
M. H.
,
Nachtsheim
,
C. J.
, and
Wasserman
,
W.
,
1996
,
Applied Linear Statistical Models
,
Irwin Chicago
,
Homewood, IL
.
6.
Breiman
,
L.
,
Friedman
,
J. H.
,
Olshen
,
R.
, and
Stone
,
C.
,
1983
,
Classification and Regression Trees
,
Wadsworth International Group
,
Belmont, CA
.
7.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
.
8.
Hastie
,
T.
, and
Tibshirani
,
R.
,
1996
, “
Discriminant Adaptive Nearest Neighbor Classification and Regression
,”
Adv. Neural Inf. Proc. Syst.
, pp.
409
415
.
9.
Drucker
,
H.
,
Burges
,
C. J.
,
Kaufman
,
L.
,
Smola
,
A. J.
, and
Vapnik
,
V.
,
1997
, “
Support Vector Regression Machines
,”
Adv. Neural Inf. Proc. Syst.
, pp.
155
161
.
10.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Netw.
,
2
(
6
), pp.
568
576
. 10.1109/72.97934
11.
Aitamurto
,
T.
,
2012
,
Crowdsourcing for Democracy: A New Era in Policy-Making
,
Helsinki
,
Parliament of Finland
.
12.
Aitamurto
,
T.
, and
Landemore
,
H. E.
,
2015
, “
Five Design Principles for Crowdsourced Policymaking: Assessing the Case of Crowdsourced off-Road Traffic Law in Finland
,”
J. Soc. Media Organ.
,
2
(
1
), pp.
1
19
.
13.
Brabham
,
D. C.
,
2009
, “
Crowdsourcing the Public Participation Process for Planning Projects
,”
Plan. Theory
,
8
(
3
), pp.
242
262
. 10.1177/1473095209104824
14.
Bentzien
,
J.
,
Bharadwaj
,
R.
, and
Thompson
,
D. C.
,
2015
, “
Crowdsourcing in Pharma: A Strategic Framework
,”
Drug Discov. Today
,
20
(
7
), pp.
874
883
. 10.1016/j.drudis.2015.01.011
15.
Poetz
,
M. K.
, and
Schreier
,
M.
,
2012
, “
The Value of Crowdsourcing: Can Users Really Compete with Professionals in Generating New Product Ideas?
,”
J. Prod. Innov. Manag.
,
29
(
2
), pp.
245
256
. 10.1111/j.1540-5885.2011.00893.x
16.
Koch
,
G.
,
Füller
,
J.
, and
Brunswicker
,
S.
,
2011
, “
Online Crowdsourcing in the Public Sector: How to Design Open Government Platforms
,”
Online Communities and Social Computing
,
Orlando,FL
,
July 9–14
,
Springer
, pp.
203
212
.
17.
Brabham
,
D. C.
,
2013
,
Using Crowdsourcing In Government
,
IBM Center for the Business of Government
,
Washington, DC
.
18.
Howe
,
J.
,
2008
,
Crowdsourcing: How the Power of the Crowd Is Driving the Future of Business
,
Random House
,
New York, NY
.
19.
Panchal
,
J. H.
,
Sha
,
Z.
, and
Kannan
,
K. N.
,
2017
, “
Understanding Design Decisions Under Competition Using Games With Information Acquisition and a Behavioral Experiment
,”
ASME J. Mech. Des.
,
139
(
9
), p.
091402
. 10.1115/1.4037253
20.
Sha
,
Z.
,
Kannan
,
K. N.
, and
Panchal
,
J. H.
,
2015
, “
Behavioral Experimentation and Game Theory in Engineering Systems Design
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051405
. 10.1115/1.4029767
21.
Vincent
,
T. L.
,
1983
, “
Game Theory as a Design Tool
,”
J. Mech. Transm. Autom. Des.
,
105
(
2
), pp.
165
170
. 10.1115/1.3258503
22.
Lewis
,
K.
, and
Mistree
,
F.
,
1997
, “
Modeling Interactions in Multidisciplinary Design: A Game Theoretic Approach
,”
AIAA J.
,
35
(
8
), pp.
1387
1392
. 10.2514/2.248
23.
Takai
,
S.
,
2010
, “
A Game-Theoretic Model of Collaboration in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051005
. 10.1115/1.4001205
24.
Takai
,
S.
,
2016
, “
A Multidisciplinary Framework to Model Complex Team-Based Product Development
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061402
. 10.1115/1.4033038
25.
Brabham
,
D. C.
,
2010
, “
Moving the Crowd at Threadless: Motivations for Participation in a Crowdsourcing Application
,”
Inf. Commun. Soc.
,
13
(
8
), pp.
1122
1145
. 10.1080/13691181003624090
26.
Ren
,
Y.
,
Bayrak
,
A. E.
, and
Papalambros
,
P. Y.
,
2016
, “
Ecoracer: Game-Based Optimal Electric Vehicle Design and Driver Control Using Human Players
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061407
. 10.1115/1.4033426
27.
Ulu
,
N. G.
,
Messersmith
,
M.
,
Goucher-Lambert
,
K.
,
Cagan
,
J.
, and
Kara
,
L. B.
,
2019
, “
Wisdom of Micro-Crowds in Evaluating Solutions to Esoteric Engineering Problems
,”
ASME J. Mech. Des.
,
141
(
8
), p.
081102
.
28.
Burnap
,
A.
,
Ren
,
Y.
,
Papalambros
,
P. Y.
,
Gonzalez
,
R.
, and
Gerth
,
R.
,
2013
, “
A Simulation Based Estimation of Crowd Ability and Its Influence on Crowdsourced Evaluation of Design Concepts
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
, DETC2013-13020.
29.
Burnap
,
A.
,
Ren
,
Y.
,
Gerth
,
R.
,
Papazoglou
,
G.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2015
, “
When Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031101
. 10.1115/1.4029065
30.
Geiger
,
D.
, and
Schader
,
M.
,
2014
, “
Personalized Task Recommendation in Crowdsourcing Information Systems—Current State of the Art
,”
Decis. Support Syst.
,
65
, pp.
3
16
. 10.1016/j.dss.2014.05.007
31.
Ball
,
Z.
, and
Lewis
,
K.
,
2019
, “
Mass Collaboration Project Recommendation Within Open-Innovation Design Networks
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021105
. 10.1115/1.4041858
32.
Ball
,
Z.
, and
Lewis
,
K.
,
2018
, “
Project Recommendation for Mass Collaboration Design Networks
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Canada
, DETC2018-85978.
33.
Ball
,
Z.
, and
Lewis
,
K.
,
2017
, “
The Design of the Crowd: Organizing Mass Collaboration Efforts
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
, DETC2017-68127.
34.
Hsu
,
S.-C.
,
Weng
,
K.-W.
,
Cui
,
Q.
, and
Rand
,
W.
,
2016
, “
Understanding the Complexity of Project Team Member Selection Through Agent-Based Modeling
,”
Int. J. Proj. Manag.
,
34
(
1
), pp.
82
93
. 10.1016/j.ijproman.2015.10.001
35.
Dorn
,
C.
, and
Dustdar
,
S.
,
2010
, “
Composing Near-Optimal Expert Teams: A Trade-off Between Skills and Connectivity
,”
On the Move to Meaningful Internet Systems: OTM 2010
,
Hersonissos, Crete, Greece
,
Oct. 25–29
,
Springer
, pp.
472
489
.
36.
Wi
,
H.
,
Oh
,
S.
,
Mun
,
J.
, and
Jung
,
M.
,
2009
, “
A Team Formation Model Based on Knowledge and Collaboration
,”
Expert Syst. Appl.
,
36
(
5
), pp.
9121
9134
. 10.1016/j.eswa.2008.12.031
37.
Ball
,
Z.
, and
Lewis
,
K.
,
2018
, “
Observing Network Characteristics in Mass Collaboration Design Projects
,”
Des. Sci.
,
4
, pp.
1
31
. 10.1017/dsj.2017.26
38.
Robinson
,
M. A.
,
Sparrow
,
P. R.
,
Clegg
,
C.
, and
Birdi
,
K.
,
2005
, “
Design Engineering Competencies: Future Requirements and Predicted Changes in the Forthcoming Decade
,”
Des. Stud.
,
26
(
2
), pp.
123
153
. 10.1016/j.destud.2004.09.004
39.
Markus
,
L.
,
Thomas
,
H.
, and
Allpress
,
K.
,
2005
, “
Confounded by Competencies? An Evaluation of the Evolution and Use of Competency Models
,”
N. Z. J. Psychol.
,
34
(
2
), p.
117
.
40.
Pop-Iliev
,
R.
, and
Platanitis
,
G.
,
2008
, “
A Rubrics-Based Methodological Approach for Evaluating the Design Competency of Engineering Students
,” Proceedings forthe Seventh International Symposium on Tools and Methods of Competitive Engineering, Izmir, Turkey.
41.
Male
,
S.
,
Bush
,
M.
, and
Chapman
,
E.
,
2010
, “
Perceptions of Competency Deficiencies in Engineering Graduates
,”
Australas. J. Eng. Educ.
,
16
(
1
), pp.
55
68
. 10.1080/22054952.2010.11464039
42.
Walsh
,
S.
, and
Linton
,
J. D.
,
2002
, “
The Measurement of Technical Competencies
,”
J. High Technol. Manag. Res.
,
13
(
1
), pp.
63
86
. 10.1016/S1047-8310(01)00049-9
43.
Sedelmaier
,
Y.
, and
Landes
,
D.
,
2014
, “
A Multi-Perspective Framework for Evaluating Software Engineering Education by Assessing Students’ Competencies: SECAT—A Software Engineering Competency Assessment Tool
,”
2014 IEEE Frontiers in Education Conference (FIE) Proceedings
,
Madrid, Spain
,
Oct. 22–25
,
IEEE
, pp.
1
8
.
44.
Wells
,
B. H.
,
2008
, “
A Multi-Dimensional Hierarchal Engineering Competency Model Framework
,”
2008 2nd Annual IEEE Systems Conference
,
Montreal, Quebec, Canada
,
Apr. 7–10
, pp.
1
6
.
45.
Salton
,
G.
, and
McGill
,
M. J.
,
1986
,
Introduction to Modern Information Retrieval
,
McGraw-Hill, New York
,
NY
.
46.
Deerwester
,
S.
,
Dumais
,
S. T.
,
Furnas
,
G. W.
,
Landauer
,
T. K.
, and
Harshman
,
R.
,
1990
, “
Indexing by Latent Semantic Analysis
,”
J. Am. Soc. Inf. Sci.
,
41
(
6
), pp.
391
407
. 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
47.
Beel
,
J.
,
Gipp
,
B.
,
Langer
,
S.
, and
Breitinger
,
C.
,
2016
, “
Research-Paper Recommender Systems: A Literature Survey
,”
Int. J. Digit. Libr.
,
17
(
4
), pp.
305
338
. 10.1007/s00799-015-0156-0
48.
Ding
,
C.
,
Li
,
T.
, and
Peng
,
W.
,
2006
, “
Nonnegative Matrix Factorization and Probabilistic Latent Semantic Indexing: Equivalence Chi-Square Statistic, and a Hybrid Method
,”
Proceedings of the Twenty-First National Conference on Artificial Intelligence
,
Menlo Park, CA
, AAAI Press, pp.
342
347
.
49.
Blei
,
D. M.
,
2011
, “
Introduction to Probabilistic Topic Models
,”
Commun. ACM
,
55
(
4
), pp.
77
84
. 10.1145/2133806.2133826
50.
Ahmed
,
F.
,
Fuge
,
M.
, and
Gorbunov
,
L. D.
,
2016
, “
Discovering Diverse, High Quality Design Ideas From a Large Corpus
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
, DETC2016-59926.
51.
Blei
,
D. M.
,
Lafferty
,
J. D.
, and
others
,
2007
, “
A Correlated Topic Model of Science
,”
Ann. Appl. Stat.
,
1
(
1
), pp.
17
35
. 10.1214/07-AOAS114
52.
Rosen-Zvi
,
M.
,
Griffiths
,
T.
,
Steyvers
,
M.
, and
Smyth
,
P.
,
2004
, “
The Author-Topic Model for Authors and Documents
,”
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence
,
AUAI Press
, pp.
487
494
.
53.
Yau
,
C.-K.
,
Porter
,
A.
,
Newman
,
N.
, and
Suominen
,
A.
,
2014
, “
Clustering Scientific Documents With Topic Modeling
,”
Scientometrics
,
100
(
3
), pp.
767
786
. 10.1007/s11192-014-1321-8
54.
Johri
,
A.
,
Wang
,
G. A.
,
Liu
,
X.
, and
Madhavan
,
K.
,
2011
, “
Utilizing Topic Modeling Techniques to Identify the Emergence and Growth of Research Topics in Engineering Education
,”
Frontiers in Education Conference (FIE)
,
IEEE
, pp.
T2F
1
.
55.
Dong
,
A.
,
Hill
,
A. W.
, and
Agogino
,
A. M.
,
2004
, “
A Document Analysis Method for Characterizing Design Team Performance
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
378
385
. 10.1115/1.1711818
56.
Dong
,
A.
,
2005
, “
The Latent Semantic Approach to Studying Design Team Communication
,”
Des. Stud.
,
26
(
5
), pp.
445
461
. 10.1016/j.destud.2004.10.003
57.
Kleinsmann
,
M.
,
Buijs
,
J.
, and
Valkenburg
,
R.
,
2010
, “
Understanding the Complexity of Knowledge Integration in Collaborative New Product Development Teams: A Case Study
,”
J. Eng. Technol. Manag.
,
27
(
1–2
), pp.
20
32
. 10.1016/j.jengtecman.2010.03.003
58.
Ball
,
Z.
, and
Lewis
,
K.
,
2019
, “
Predicting Multi-Disciplinary Design Performance Utilizing Automated Topic Discovery
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
American Society of Mechanical Engineers
, DETC2019-97189.
59.
Buitelaar
,
P.
, and
Eigner
,
T.
,
2008
, “
Topic Extraction From Scientific Literature for Competency Management
,”
The 7th International Semantic Web Conference
,
Karlsruhe, Germany
,
Oct. 26–30
, pp.
25
66
.
60.
Kotsiantis
,
S. B.
,
Zaharakis
,
I.
, and
Pintelas
,
P.
,
2007
, “
Supervised Machine Learning: A Review of Classification Techniques
,”
Emerg. Artif. Intell. Appl. Comput. Eng.
,
160
, pp.
3
24
.
61.
Nasrabadi
,
N. M.
,
2007
, “
Pattern Recognition and Machine Learning
,”
J. Electron. Imaging
,
16
(
4
), p.
049901
. 10.1117/1.2819119
62.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
63.
Hofmann
,
T.
,
2017
, “
Probabilistic Latent Semantic Indexing
,”
ACM SIGIR Forum
,
ACM
, pp.
211
218
.
64.
Jordan
,
M. I.
,
1999
,
Learning in Graphical Models
,
MIT Press
,
Cambridge, MA
.
65.
Lee
,
D. D.
, and
Seung
,
H. S.
,
1999
, “
Learning the Parts of Objects by Non-Negative Matrix Factorization
,”
Nature
,
401
(
6755
), pp.
788
791
. 10.1038/44565
66.
University at Buffalo
. “
Undergraduate Degree & Course Catalog
” [Online]. Available: https://catalog.buffalo.edu/courses/, Accessed April 17, 2019.
67.
Bird
,
S.
, and
Loper
,
E.
,
2004
, “
NLTK: The Natural Language Toolkit
,”
Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions
,
Barcelona, Spain
,
July 21–26
,
Association for Computational Linguistics
, p.
31
.
68.
Picard
,
R. R.
, and
Cook
,
R. D.
,
1984
, “
Cross-Validation of Regression Models
,”
J. Am. Stat. Assoc.
,
79
(
387
), pp.
575
583
. 10.1080/01621459.1984.10478083
You do not currently have access to this content.