High-performance cooling is often necessary for thermal management of high power density systems. However, human intuition and experience may not be adequate to identify optimal thermal management designs as systems increase in size and complexity. This article presents an architecture exploration framework for a class of single-phase cooling systems. This class is specified as architectures with multiple cold plates in series or parallel and a single fluid split and junction. Candidate architectures are represented using labeled rooted tree graphs. Dynamic models are automatically generated from these trees using a graph-based thermal modeling framework. Optimal performance is determined by solving an appropriate fluid flow distribution problem, handling temperature constraints in the presence of exogenous heat loads. Rigorous case studies are performed in simulation, with components subject to heterogeneous heat loads and temperature constraints. Results include optimization of thermal endurance for an enumerated set of 4051 architectures. The framework is also applied to identify cooling system architectures capable of steady-state operation under a given loading.

References

1.
Peddada
,
S. R. T.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2018
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME 2018 International Design Engineering Technical Conferences
, p.
V02AT03A005
,
No. DETC2018-86148
.
2.
Kassakian
,
J. G.
, and
Jahns
,
T. M.
,
2013
, “
Evolving and Emerging Applications of Power Electronics in Systems
,”
IEEE. J. Emerg. Sel. Top. Power. Electron.
,
1
(
2
), pp.
47
58
.
3.
Lequesne
,
B.
,
2015
, “
Automotive Electrification: The Nonhybrid Story
,”
IEEE Trans. Transport. Electrification
,
1
(
1
), pp.
40
53
.
4.
Yu
,
X. E.
,
Xue
,
Y.
,
Sirouspour
,
S.
, and
Emadi
,
A.
, “
Microgrid and Transportation Electrification: A Review
,”
IEEE Transportation Electrification Conference and Expo
,
Dearborn, MI
,
June 18–20, 2012
.
5.
Doman
,
D. B.
,
2017
, “
Fuel Flow Control for Extending Aircraft Thermal Endurance
,”
J. Thermophys. Heat Transfer
,
32
(
1
), pp.
35
50
.
6.
Park
,
S.
, and
Jung
,
D.
,
2010
, “
Design of Vehicle Cooling System Architecture for a Heavy Duty Series-Hybrid Electric Vehicle Using Numerical System Simulations
,”
ASME J. Eng. Gas. Turbines Power
,
132
(
9
), p.
092802
.
7.
Ouchi
,
M.
,
Abe
,
Y.
,
Fukagaya
,
M.
,
Ohta
,
H.
,
Shinmoto
,
Y.
,
Sato
,
M.
, and
Iimura
,
K.-i.
, “
Thermal Management Systems for Data Centers With Liquid Cooling Technique of CPU
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
San Diego, CA
,
May 30– June 1, 2012
.
8.
Doty
,
J.
,
Yerkes
,
K.
,
Byrd
,
L.
,
Murthy
,
J.
,
Alleyne
,
A.
,
Wolff
,
M.
,
Heister
,
S.
, and
Fisher
,
T. S.
,
2017
, “
Dynamic Thermal Management for Aerospace Technology: Review and Outlook
,”
J. Thermophys. Heat Transfer
,
31
(
1
), pp.
86
98
.
9.
Jain
,
N.
, and
Alleyne
,
A.
,
2015
, “
Exergy-Based Optimal Control of a Vapor Compression System
,”
Energy Conversion Manag.
,
92
, pp.
353
365
.
10.
Kim
,
J.-K.
, and
Smith
,
R.
,
2001
, “
Cooling Water System Design
,”
Chem. Eng. Sci.
,
56
(
12
), pp.
3641
3658
.
11.
Panjeshahi
,
M. H.
,
Ataei
,
A.
,
Gharaie
,
M.
, and
Parand
,
R.
,
2009
, “
Optimum Design of Cooling Water Systems for Energy and Water Conservation
,”
Chem. Eng. Res. Design
,
87
(
2
), pp.
200
209
.
12.
Muller
,
C. J.
, and
Craig
,
I. K.
,
2016
, “
Energy Reduction for a Dual Circuit Cooling Water System Using Advanced Regulatory Control
,”
Appl. Energy.
,
171
, pp.
287
295
.
13.
Delia
,
D. J.
,
Gilgert
,
T. C.
,
Graham
,
N. H.
,
Hwang
,
U.
,
Ing
,
P. W.
,
Kan
,
J. C.
,
Kemink
,
R. G.
,
Maling
,
G. C.
,
Martin
,
R. F.
,
Moran
,
K. P.
,
Reyes
,
J. R.
,
Schmidt
,
R. R.
, and
Steinbrecher
,
R. A.
,
1992
, “
System Cooling Design for the Water-Cooled IBM Enterprise System/9000 Processors
,”
IBM J. Res. Dev.
,
36
(
4
), pp.
791
803
.
14.
Kim
,
J.-K.
,
Lee
,
G. C.
,
Zhu
,
F. X. X.
, and
Smith
,
R.
,
2002
, “
Cooling System Design
,”
Heat Transfer. Eng.
,
23
(
6
), pp.
49
61
.
15.
Pangborn
,
H. C.
,
Koeln
,
J. P.
,
Williams
,
M. A.
, and
Alleyne
,
A. G.
,
2018
, “
Experimental Validation of Graph-Based Hierarchical Control for Thermal Management
,”
J. Dyn. Syst. Meas. Control.
,
140
(
10
), p.
101016
.
16.
Herber
,
D. R.
,
Guo
,
T.
, and
Allison
,
J. T.
,
2017
, “
Enumeration of Architectures With Perfect Matchings
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051403
.
17.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2014
, “
GPOPS-II: A Matlab Software for Solving Multiple-Phase Optimal Control Problems Using HP-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Softw.
41
(
1
), pp.
1
17
.
18.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
,
SIAM
,
Philadelphia
.
19.
McCarthy
,
K.
,
Walters
,
E.
,
Heltzel
,
A.
,
Elangovan
,
R.
,
Roe
,
G.
,
Vannice
,
W.
,
Schemm
,
C.
,
Dalton
,
J.
,
Iden
,
S.
,
Lamm
,
P.
,
Miller
,
C.
, and
Susainathan
,
A.
,
2008
, “
Dynamic Thermal Management System Modeling of a More Electric Aircraft
,”
Power Systems Conference
,
Paper No. 2008-01-2886
.
20.
Ganev
,
E.
, and
Koerner
,
M.
,
2013
, “
Power and Thermal Management for Future Aircraft
,”
AeroTech Congress and Exhibition
,
No. 2013-01-2273
.
21.
Kim
,
E.
,
Shin
,
K. G.
, and
Lee
,
J.
, “
Real-Time Battery Thermal Management for Electric Vehicles
,”
ACM/IEEE International Conference on Cyber-Physical Systems
,
Berlin, Germany
,
Apr. 14–17, 2014
.
22.
Koeln
,
J. P.
,
Williams
,
M. A.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2016
, “
Experimental Validation of Graph-Based Modeling for Thermal Fluid Power Flow Systems
,”
ASME Dynamic Systems and Control Conference
, p.
V002T21A008
,
No. DSCC2016-9782
.
23.
Moore
,
K. L.
,
Vincent
,
T. L.
,
Lashhab
,
F.
, and
Liu
,
C.
,
2011
, “
Dynamic Consensus Networks With Application to the Analysis of Building Thermal Processes
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
3078
3083
.
24.
Williams
,
M. A.
,
Koeln
,
J. P.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2018
, “
Dynamical Graph Models of Aircraft Electrical, Thermal, and Turbomachinery Components
,”
J. Dyn. Syst. Meas. Control
,
140
(
4
), p.
041013
.
25.
Preisig
,
H. A.
,
2009
, “
A Graph-Theory-Based Approach to the Analysis of Large-Scale Plants
,”
Comput. Chem. Eng.
,
33
(
3
), pp.
598
604
.
26.
Pangborn
,
H. C.
,
Koeln
,
J. P.
, and
Alleyne
,
A. G.
, “
Passivity and Decentralized MPC of Switched Graph-Based Power Flow Systems
,”
American Control Conference
,
Milwaukee, WI
,
June 27–29, 2018
.
27.
West
,
D. B.
,
2001
,
Introduction to Graph Theory
, 2nd ed,
Pearson
,
Upper Saddle River, NJ
.
28.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
C.
,
2009
,
Introduction to Algorithms
, 3rd ed.,
MIT Press, Cambridge, MA
.
29.
Riordan
,
J.
,
1960
, “
The Enumeration of Trees by Height and Diameter
,”
IBM J. Res. Dev.
,
4
(
5
), pp.
473
478
.
30.
A000262
. “
The On-Line Encyclopedia of Integer Sequences
.” https://oeis.org/A000262. Accessed August 15, 2018.
31.
Stanley
,
R. P.
,
2011
,
Enumerative Combinatorics: Volume 1
, 2nd ed.,
Cambridge University Press, Cambridge
.
32.
Peddada
,
S. R. T.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
, “
Cooling-System Architecture Project
.” [GitHub]. https://github.com/satyartpeddada/csap. Accessed March 24, 2019.
33.
Pangborn
,
H.
,
Hey
,
J. E.
,
Deppen
,
T. O.
,
Alleyne
,
A. G.
, and
Fisher
,
T. S.
,
2017
, “
Hardware-in-the-Loop Validation of Advanced Fuel Thermal Management Control
,”
J. Thermophys. Heat Transfer
,
31
(
4
), pp.
901
909
.
34.
Guo
,
T.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2018
, “
Reducing Evaluation Cost for Circuit Synthesis Using Active Learning
,”
ASME 2018 International Design Engineering Technical Conferences
, p.
V02AT03A011
,
No. DETC2018-85654
.
35.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), pp.
021003
.
You do not currently have access to this content.