A manufacturing process for fabricating ease-off surfaces of a face gear drive that is provided with controllable unloaded meshing performance and local bearing contact is proposed. In order to control the unloaded meshing performance, a predesigned transmission error, a predesigned contact path, and the length of contact ellipse are applied in the redesign of the ease-off surfaces of the pinion and face gear. A method of point contact between the grinding disk and the manufactured pinion is proposed to generate the pinion's ease-off surface, the grinding disk is driven by a series of parabolic motions. Numerical examples are used to illustrate the application of the proposed method, the proposed method is proven to be feasible, and the redesigned face gear is proven to be able reproduce the predesigned unloaded meshing performance simulated by tooth contact analysis (TCA). The influence of misalignment on unloaded meshing performance is also analyzed.

References

1.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Zanzi
,
C.
,
2002
, “
Design, Generation, and Stress Analysis of Two Versions of Geometry of Face-Gear Drives
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1179
1211
.
2.
Zanzi
,
C.
, and
Pedrero
,
J. I.
,
2005
, “
Application of Modified Geometry of Face Gear Drive
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
27–29
), pp.
3047
3066
.
3.
Tang
,
J.-Y.
,
Yin
,
F.
, and
Chen
,
X.-M.
,
2013
, “
The Principle of Profile Modified Face-Gear Grinding Based on Disk Wheel
,”
Mech. Mach. Theory
,
70
(
2013
), pp.
1
15
.
4.
Litvin
,
F. L.
, and
Zhang
,
Y.
,
1991
, “
Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears
,” University of Illinois at Chicago, Chicago, IL,
Technical Report No. AVSCOM TR-90-C-028
.
5.
Xuemei
,
C.
,
Zongde
,
F.
,
Haob
,
X.
, and
Jinzhan
,
S.
,
2008
, “
Design of Pinion Machine Tool-Settings for Spiral Bevel Gears by Controlling Contact Path and Transmission Errors
,”
Chin. J. Aeronaut.
,
21
(
2
), pp.
179
186
.
6.
Akimov
,
V. V.
,
Lagutin
,
S. A.
, and
Volkov
,
A. E.
,
2007
, “
New Approach to the Local Synthesis of Spiral Bevel Gears
,”
ASME
Paper No. DETC2007-34024.
7.
Fuentes
,
A.
,
Gonzalez-Perez
,
I.
,
Litvin
,
F. L.
,
Hayasaka
,
K.
, and
Yukishima
,
K.
,
2005
, “
Design, Manufacture, and Evaluation of Prototypes of Low-Noise High-Endurance Spiral Bevel Gear Drives
,”
ASME
Paper No. DETC2005-84013.
8.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2006
, “
Design, Manufacture, Stress Analysis, and Experimental Tests of Low-Noise High Endurance Spiral Bevel Gears
,”
Mech. Mach. Theory
,
41
(
1
), pp.
83
118
.
9.
Stadtfeld
,
H. J.
, and
Gaiser
,
U.
,
2000
, “
The Ultimate Motion Graph
,”
ASME J. Mech. Des.
,
122
(
3
), pp.
317
322
.
10.
Wang
,
P.-Y.
, and
Fong
,
Z.-H.
,
2006
, “
Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears With Modified Radial Motion (MRM) Correction
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
457
467
.
11.
Fan
,
Q.
,
2006
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
.
12.
Fan
,
Q.
,
Dafoe
,
R.
, and
Swanger
,
J. W.
,
2008
, “
Higher-Order Tooth Flank Form Error Correction for Face Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
7
), p.
0726011
.
13.
Shih
,
Y.-P.
, and
Fong
,
Z.-H.
,
2007
, “
Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1294
1302
.
14.
Shih
,
Y.-P.
,
2010
, “
A Novel Ease-Off Flank Modification Methodology for Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1108
1124
.
15.
Simon
,
V.
,
2001
, “
Optimal Machine Tool Setting for Hypoid Gears Improving Load Distribution
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
557
582
.
16.
Simon
,
V.
,
2008
, “
Machine Tool Settings to Reduce the Sensitivity of Spiral Bevel Gears to Tooth Errors and Misalignments
,”
ASME J. Mech. Des.
,
130
(
8
), p.
0826031
.
17.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Method for Loaded Tooth Contact Analysis of Hypoid Gears Having Local and Global Surface Deviations
,”
ASME J. Mech. Des.
,
132
(
7
), pp.
1
5
.
18.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2008
, “
Nonlinear Identification of Machine Settings for Flank Form Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
11
), p.
1126021
.
19.
Gabiccini
,
M.
,
Artoni
,
A.
, and
Guiggiani
,
M.
,
2012
, “
On the Identification of Machine Settings for Gear Surface Topography Corrections
,”
ASME J. Mech. Des.
,
134
(
4
), p.
0410041
.
20.
Artoni
,
A.
,
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Optimization of the Loaded Transmission Error of Hypoid Gears
,”
ASME J. Mech. Des.
,
132
(
1
), p.
0110101
.
21.
Mermoz
,
E.
,
Astoul
,
J.
,
Sartor
,
M.
,
Linares
,
J. M.
, and
Bernard
,
A.
,
2013
, “
A New Methodology to Optimize Spiral Bevel Gear Topography
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
119
122
.
22.
Astoul
,
J.
,
Mermoz
,
E.
,
Sartor
,
M.
,
Linares
,
J. M.
, and
Bernard
,
A.
,
2014
, “
New Methodology to Reduce the Transmission Error of the Spiral Bevel Gears
,”
CIRP Ann.-Manuf. Technol.
,
63
(
1
), pp.
165
168
.
23.
Barone
,
S.
,
Borgianni
,
L.
, and
Forte
,
P.
,
2004
, “
Evaluation of the Effect of Misalignment and Profile Modification in Face Gear Drive by a Finite Element Meshing Simulation
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
916
924
.
24.
Guingand
,
M.
,
de Vaujany
,
J. P.
, and
Icard
,
Y.
,
2005
, “
Analysis and Optimization of the Loaded Meshing of Face Gears
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
135
143
.
25.
Tsuji
,
I.
,
Gunbara
,
H.
,
Kawasaki
,
K.
, and
Takami
,
A.
,
2011
, “
Machining and Running Test of High-Performance Face Gear Set
,”
ASME
Paper No. DETC2011-48824.
26.
Yang
,
X.-Y.
, and
Tang
,
J.-Y.
,
2014
, “
Research on Manufacturing Method of CNC Plunge Milling for Spur Face-Gear
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3013
3019
.
27.
Guo
,
H.
,
Zhao
,
N.
, and
Zhang
,
S.
,
2013
, “
Generation Simulation and Grinding Experiment of Face-Gear Based on Single Index Generating Method
,”
ASME
Paper No. DETC2013-12566.
28.
Binney
,
D. A.
,
Vinayak
,
H.
,
Gmirya
,
Y.
,
Zunski
,
L. M.
,
Houser
,
D. R.
, and
Ames
,
E. C.
,
2003
, “
Face Gear Transmission Development Program at Sikorsky Aircraft
,”
ASME
Paper No. DETC2003/PTG-48039.
29.
Stadtfeld
,
H. J.
,
2012
, “
Method and Tool for Manufacturing Face Gear
,” U.S. Patent No. US2012/00099939 A1.
30.
Jinke
,
J.
, and
Zongde
,
F.
,
2015
, “
Design and Analysis of Modified Cylindrical Gears With a Higher-Order Transmission Error
,”
Mech. Mach. Theory
,
88
(
141
), pp.
141
152
.
31.
Lee
,
C.-K.
,
2009
, “
Manufacturing Process for a Cylindrical Crown Gear Drive With a Controllable Fourth Order Polynomial Function of Transmission Error
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
3
13
.
32.
Litvin
,
F. L.
,
1994
,
Gear Geometry and Applied Theory
,
PTR Prentice Hall
,
Englewood Cliffs, NJ
, Chaps. 8, 9, 18.
33.
Litvin
,
F. L.
,
Egelja
,
A.
,
Tan
,
J.
,
Chen
,
D.Y-D.
, and
Heath
,
G.
,
2000
, “
Handbook on Face Gear Drives With a Spur Involute Pinion
,” University of Illinois at Chicago, Chicago, IL,
Technical Report No. 0704-0188
.
34.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Gonzalez-Perez
,
I.
,
2003
, “
Modified Involute Helical Gears: Computerized Design, Simulation of Meshing and Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
33–34
), pp.
3619
3655
.
35.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Claudio Zanzi
,
Pontiggia
,
M.
, and
Handschuh
,
R. F.
,
2002
, “
Face-Gear Drive With Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
25–26
), pp.
2785
2813
.
You do not currently have access to this content.