The typical leaf-type isosceles-trapezoidal flexural (LITF) pivot consists of two flexural beams and two rigid-bodies. The single LITF pivot has the small range of motion and relatively large center shift. However, the vacancy in the pivot point makes LITF pivots much easier to be cascaded than other commonly used flexure joints. The performances of LITF pivots will be greatly improved by connecting them together in series. This paper presents an innovative design of LITF pivots. The single LITF pivot is regarded as a basic configurable module, and four of them can be used to construct new types of flexure joint, which are referred to here as quadri-LITF (Q-LITF) pivot. Ten types of Q-LITF pivots are synthesized in this paper. Compared with a single LIFT pivot, the stroke of a Q-LITF pivot is larger, and stiffness of the mechanism becomes smaller. The center-shift of the Q-LIFT pivot can be optimized by tuning geometric parameters of its single LITF modules. Based on the pseudorigid-body (PRB) model of the single LITF pivot, the method for analyzing the Q-LITF pivots is proposed. One type of the Q-LITF pivots is selected as an example to demonstrate the proposed method for the Q-LITF pivot analysis. The comparison between the results of PRB model analysis and the finite element analysis (FEA) shows the feasibility and efficiency of the analysis procedure.

References

1.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.10.1115/1.2735342
2.
Her
,
I.
, and
Chang
,
J. C.
,
1994
, “
A Linear Scheme for the Displacement Analysis of Micropositioning Stages With Flexure Hinges
,”
ASME J. Mech. Des.
,
116
, pp.
770
776
.10.1115/1.2919449
3.
Onillon
,
E.
,
Henein
,
S.
, and
Theurillat
,
P.
,
2003
, “
Small Scanning Mirror Mechanism
,” Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.
1129
1133
.
4.
Ouyang
,
P. R.
,
Zhang
,
W. J.
,
Gupta
,
M. M.
,
2008
, “
A New Compliant Mechanical Amplifier Based on a Symmetric Five-Bar Topology
,”
ASME J. Mech. Des.
,
130
(
10
), p.
104501
.10.1115/1.2965600
5.
Krishnan
G.
, and
Ananthasuresh
G. K.
,
2008
, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102304
.10.1115/1.2965599
6.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
11
), pp.
280
290
.10.1115/1.2919359
7.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
8.
Tseytlin
Y.M.
,
2006
,
Structural Synthesis in Precision Elasticity
,
Springer
,
New York
.
9.
Trease
,
B.
,
Moon
,
Y.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
, pp.
788
798
.10.1115/1.1900149
10.
Smith
,
S. T.
, and
Chetwynd
,
D. G.
,
1992
,
Foundations of Ultraprecision Mechanism Design
,
Gordon and Breach Science
,
New York
.
11.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
, pp.
461
476
.10.1016/S0094-114X(02)00007-1
12.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science
,
New York
.
13.
Goldfarb
,
M.
, and
Speich
,
J. E.
,
2000
, “
A Well-Behaved Revolute Flexure Joint for Compliant Mechanism Design
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
424
429
.10.1115/1.2829478
14.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
10th European Space Mechanisms and Tribology Symposium
,
San Sebastian
,
Spain
.
15.
Pei
,
X.
,
Yu
,
J. J.
,
Zong
,
G. H.
,
Bi
,
S. S.
, and
Yu
,
Z. W.
,
2008
, “
Analysis of Rotational Precision for an Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052302
.10.1115/1.2885507
16.
Pei
,
X.
,
Yu
,
J. J.
,
Zong
,
G. H.
, and
Bi
,
S. S.
,
2008
, “
The Stiffness Model of Leaf-Type Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082303
.10.1115/1.2936902
17.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME Journal of Mechanical Design
,
129
(
6
), pp.
625
639
.10.1115/1.2717231
18.
Pei
,
X.
,
Yu
,
J. J.
,
Zong
,
G. H.
, and
Bi
,
S. S.
,
2009
, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
ASME Journal of mechanisms and robotics.
,
1
(
2
), p.
021005
.10.1115/1.3046140
19.
Pei
,
X.
, and
Yu
,
J. J.
, “
ADLIF: A New Large-Displacement Beam-Based Flexure Joint
,”
Mech. Sci.
,
2011
(
2
),
183
188
.
You do not currently have access to this content.