This paper describes a multidisciplinary project focused on developing design and fabrication methods for narrow-gauge compliant mechanisms expected to be useful in advanced minimally invasive surgery. In this paper, three aspects of the project are discussed: meso-scale fabrication, compliant mechanism design, and experimental determination of mechanical properties and forceps performance. The selected manufacturing method is a lost mold rapid infiltration forming process that is being developed at Penn State University. The process is capable of producing hundreds of freestanding metallic and ceramic parts with feature sizes ranging from sub-10 μm to approximately 300 μm. To fulfill surgical and manufacturing requirements, a contact-aided compliant mechanism design is proposed. A finite element analysis solution, used to evaluate large deformation and contact, is implemented into an optimization routine to maximize tool performance. A case study demonstrates the design and manufacturing processes for a 1 mm diameter austenitic (300 series) stainless steel forceps. Due to manufacturing variables that affect grain size and particle adhesion, the strength of the fabricated parts are expected to vary from the bulk material properties. Therefore, fabricated parts are experimentally tested to determine accurate material properties. Three point bend tests reveal yield strengths between 603 and 677 MPa. Results from the design optimization routine show that material strengths within this range require large instrument aspect ratios between 40 and 50 with anticipated blocked forces as high as 1.5 N. An initial prototype is assembled and tested to compare experimental and theoretical tool performance. Good agreement between the computational and experimental data confirms the efficacy of the processes used to develop a meso-scale contact-aided compliant forceps.

References

1.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
2.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
3.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
, and
Trease
,
B.
, 2005, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
990
.
4.
Mankame
,
N.
, and
Ananthasuresh
,
G. K.
, 2002, “
Contact Aided Compliant Mechanisms: Concepts and Preliminaries
,” IDETC, Montreal, Sept. 2002, Paper No. DETC2002/DAC-34149.
5.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
667
672
.
6.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2007, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2564
2605
.
7.
Moon
,
Y. M.
, 2007, “
Bio-Mimetic Design of Finger Mechanism With Contact Aided Compliant Mechanism
,”
Mech. Mach. Theory
,
42
(
5
), pp.
600
611
.
8.
Guerinot
,
A. E.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Todd
,
R. H.
, 2005, “
Compliant Joint Design Principles for High Compressive Load Situations
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
774
781
.
9.
Mehta
,
V.
,
Frecker
,
M. J.
, and
Lesieutre
,
G. A.
, 2009, “
Stress Relief in Contact-Aided Compliant Celluar Mechanisms
,”
ASME J. Mech. Des.
,
131
(
9
),
091009
.
10.
Cronin
,
J. A.
,
Frecker
,
M.
, and
Mathew
,
A.
, 2008, “
Design of a Compliant Endoscopic Suturing Instrument
,”
ASME J. Med. Devices
,
2
,
025002
.
11.
Deepak
,
S. R.
,
Sahu
,
D.
,
Dinesh
,
M.
,
Jalan
,
S.
, and
Ananthasuresh
,
G. K.
, 2009, “
A Comparative Study of the Formulations for Topology Optimization of Compliant Mechanisms
,”
DETC 2008: 32nd Annual Mechanisms and Robotics Conference
, Vol.
2,
pp.
205
216
.
12.
Disch
,
A.
,
Lutze
,
T.
,
Schauer
,
D.
,
Mueller
,
C.
, and
Reinecke
,
H.
, 2008, “
Innovative Polymer-Based Shaft Instruments for Minimally Invasive Surgery
,”
Minimally Invasive Ther. Allied Technol.
,
17
(
5
), pp.
275
284
.
13.
Doria
,
M.
, and
Birglen
,
L.
, 2009, “
Design of an Underactuated Compliant Gripper for Surgery Using Nitinol
,”
ASME J. Med. Devices
,
3
(
1
),
011007
.
14.
Frecker
,
M.
,
Powell
,
K.
, and
Haluck
,
R.
, 2005, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
990
993
.
15.
Haddab
,
Y.
,
Chaillet
,
N.
, and
Bourjault
,
A.
, 2000, “
A Microgripper Using Smart Piezoelectric Actuators
,”
Proceedings of the 2000 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros 2000)
, Vol.
1–3
, pp.
659
664
.
16.
Lan
,
C. C.
, and
Lee
,
K. M.
, 2008, “
An Analytical Contact Model for Design of Compliant Fingers
,”
ASME J. Mech. Des.
,
130
(
1
),
011008
.
17.
Oh
,
Y. S.
,
Lee
,
W. H.
,
Stephanou
,
H. E.
, and
Skidmore
,
G. D.
, 2003, “
Design, Optimization, and Experiments of Compliant Microgripper
,”
Micro-Electro-Mechanical Systems (Mems) - 2003
, pp.
345
350
.
18.
Schellhammer
,
F.
,
Zahringer
,
M.
, and
Lackner
,
K.
, 2002, “
Nitinol Micro-Forceps for Retrieval of Intravascular Objects–First In Vitro Experiences
,”
Invest. Radiol.
,
37
(
10
), pp.
577
579
.
19.
Susanto
,
K.
, and
Yang
,
B.
, 2007, “
Modeling and Design of a Piezoelectric Forceps Actuator for Meso/Micro Grasping
,”
ASME J. Med. Devices
,
1
(
1
), pp.
30
38
.
20.
Tsai
,
Y. C.
,
Lei
,
S. H.
, and
Sudin
,
H.
, 2005, “
Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,”
J. Micromech. Microeng.
,
15
(
1
), pp.
143
156
.
21.
Wang
,
N. F.
, and
Tai
,
K.
, 2008, “
Design of Grip-And-Move Manipulators Using Symmetric Path Generating Compliant Mechanisms
,”
ASME J. Mech. Des.
,
130
(
11
),
112305
.
22.
Pauli
,
E. M.
,
Moyer
,
M. T.
,
Haluck
,
R. S.
, and
Mathew
,
A.
, 2008, “
Self-Approximating Transluminal Access Technique for Natural Orifice Transluminal Endoscopic Surgery: A Porcine Survival Study (With Video)
,”
Gastrointest. Endosc.
,
67
(
4
), pp.
690
697
.
23.
Hawes
,
R. H.
, 2006, “
ASGE/SAGES Working Group on Natural Orifice Translumenal Endoscopic Surgery
,”
Gastrointest. Endosc.
,
63
(
2
), pp.
199
203
.
24.
Reavis
,
K. M.
, and
Melvin
,
W. S.
, 2008, “
Advanced Endoscopic Techniques
,”
Surg. Endosc.
,
22
, pp.
1533
1546
.
25.
Bardaro
,
S. J.
, and
Swanstrom
,
L.
, 2006, “
Development of Advanced Endoscopes for Natural Orifice Translumenal Endoscopic Surgery (NOTES)
,”
Minimally Invasive Ther. Allied Technol.
,”
15
(
6
), pp.
378
383
.
26.
Kavic
,
M. S.
,
Mirza
,
B.
,
Horne
,
W.
, and
Moskowitz
,
J. B.
, 2008, “
NOTES: Issues and Technical Details With Introduction of NOTES Into a Small General Surgery Residency Program
,”
J. Soc. Laparoendosc. Surg.
,
12
(
1
), pp.
37
45
.
27.
Swanstrom
,
L.
,
Kozarek
,
R.
,
Pasricha
,
P.
,
Gross
,
N. E.
,
Birkett
,
D.
,
Parkk
,
P.
,
Saadat
,
V.
,
Ewers
,
R.
, and
Swain
,
P.
, 2005, “
Development of a New Access Device for Transgastric Surgery
,”
J. Gastrointest. Surg.
,
9
(
8
), pp.
1129
1137
.
28.
Miedema
,
B. W.
,
Sporn
,
E.
,
Astudillo
,
J. A.
, and
Thaler
,
K.
, 2008, “
Epilogue: The Future of NOTES
,”
Eur. Surg.
,
40
(
3
), pp.
117
119
.
29.
Swanstrom
,
L. L.
,
Whiteford
,
M.
, and
Khanjanchee
,
Y.
, 2008, “
Developing Essential Tools to Enable Transgastric Surgery
,”
Surg. Endosc.
,
22
(
3
), pp.
600
604
.
30.
Hussain
,
A.
, and
Mahmood
,
H.
, 2008, “
NOTES: Current Status and Expectations
,”
Eur. Surg.
,
40
(
4
), pp.
176
186
.
31.
Addis
,
M.
,
Aguirre
,
M. E.
,
Frecker
,
M.
,
Haluck
,
R.
,
Abraham
,
M.
,
Pauli
,
E. M.
, and
Gopal
,
J.
, 2011, “
Development of Tasks and Evaluation of a Prototype Forceps for NOTES
,” J. Soc. Laparoendosc. Surg. (in press).
32.
Heule
,
M.
,
Vuillemin
,
S.
, and
Gauckler
,
L. J.
, 2003, “
Powder-Based Ceramic Meso- and Microscale Fabrication Processes
,”
Adv. Mater.
,
15
(
15
), pp.
1237
1245
.
33.
Okubo
,
K.
,
Tanaka
,
S.
, and
Ito
,
H.
, 2009, “
Molding Technology for Improvement on Dimensional Accuracy in Micro Metal Injection Molding
,”
Microsyst.Technol.
,
15
(
6
), pp.
887
892
.
34.
Knitter
,
R.
,
Gohring
,
D.
,
Risthaus
,
P.
, and
Hausselt
,
J.
, 2001, “
Microfabrication of Ceramic Microreactors
,”
Microsyst. Technol.
,
7
(
3
), pp.
85
90
.
35.
Schönholzer
,
U. P.
,
Hummel
,
R.
, and
Gauckler
,
L. J.
, 2000, “
Microfabrication of Ceramics by Filling of Photoresist Molds
,”
Adv. Mater.
,
12
(
17
), pp.
1261
1263
.
36.
Lawes
,
R. A.
, 2007, “
Manufacturing Costs for Microsystem/MEMS Using High Aspect Ratio Microfabrication Techniques
,”
Microsyst. Technol.
,
13
(
1
), pp.
85
95
.
37.
Lin
,
C. H.
,
Lee
,
G. B.
,
Chang
,
B. W.
, and
Chang
,
G. L.
, 2002, “
A New Fabrication Process for Ultra-Thick Microfluidic Microstructures Utilizing SU-8 Photoresist
,”
J. Micromech. Microeng.
,
12
(
5
), pp.
590
597
.
38.
Antolino
,
N. E.
,
Hayes
,
G.
,
Kirkpatrick
,
R.
,
Muhlstein
,
C. L.
,
Frecker
,
M.
,
Mockensturm
,
E. M.
, and
Adair
,
J. H.
, 2009, “
Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication
,”
J. Am. Ceram. Soc.
,
92
(
1
), pp.
S63
S69
.
39.
Antolino
,
N. E.
,
Hayes
,
G.
,
Kirkpatrick
,
R.
,
Muhlstein
,
C. L.
,
Frecker
,
M.
,
Mockensturm
,
E. M.
, and
Adair
,
J. H.
, 2009, “
Lost Mold-Rapid Infiltration Forming of Mesoscale Ceramics: Part 2, Geometry and Strength Improvements
,”
J. Am. Ceram. Soc.
,
92
(
1
), pp.
S70
S78
.
40.
Erhard
,
K.
, and
Samal
,
P.
,
Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
(
ASM International
,
Metals Park, OH
, 2007).
41.
Schatt
,
W.
, and
Wieters
,
K.-P.
, 1997,
Powder Metallurgy: Processing and Materials
,
European Powder Metallurgy Association
,
Shrewsbury, UK
.
42.
Sushumna
,
I.
,
Gupta
,
R. K.
, and
Ruckenstein
,
E.
, 1992, “
Effective Dispersants for Concentrated, Nonaqueous Suspensions
,”
J. Mater. Res.
,
7
(
10
), pp.
2884
2893
.
43.
Aguirre
,
M.
, and
Frecker
,
M.
, 2006, “
Design of a 1.0 mm Multifunctional Forceps-Scissors Instrument for Minimally Invasive Surgery
,”
Proceedings of the ASME 30th Mechanisms and Robotics Conference
,
Philadelphia, PA
, Paper No. DETC2006-99446.
44.
Aguirre
,
M.
, and
Frecker
,
M.
, 2008, “
Design Innovation Size and Shape Optimization of a 1.0 mm Multifunctional Forceps-Scissors Surgical Instrument
,”
ASME J. Med. Devices
,
2
(
1
),
015001
.
45.
Cazzini
,
K.
, and
Booth
,
D.
, 2004, “
Utilization Study of Opthalmic Instruments
,” Alcon Manufacturing, Ltd. Internal Report.
46.
Ansys, Inc., 2005, Ansys Help, ANSYS version 10.0 “
ANSYS Advanced Analysis Techniques Guide
.”
47.
Ansys, Inc., 2005, Ansys Help, ANSYS version 10.0, “
ANSYS Theory Reference
.”
You do not currently have access to this content.