This study investigates the performance of an energy harvester (EH) utilizing a single crystal lead magnesium niobate-lead titanate (PMN-PT) material via analysis and experiment. The EH, intended to convert mechanical energy at a harmonic frequency such as from a fixed revolutions per minute (RPM) rotating machine, was composed of a cantilever beam having a single crystal PMN-PT patch, a tip mass, a rectifier, and an electric load. The fundamental frequency of the EH was finely adjusted via moving a tip mass spanwise. The analysis was used to select an optimal EH configuration based on a weight constraint (less than 200 g) and a narrow band frequency range (nominally 60 Hz). The analysis and performance were validated experimentally for different excitation levels. The harvested dc power was measured for low acceleration levels of 0.05–0.2 g (where 1g=9.81m/s2) typical of rotating machinery. The maximum dc power generated was 19 mW for an excitation of 0.2 g. The measured power density (i.e., maximum dc power over total device volume) and measured specific power (i.e., maximum dc power over total device mass) of the energy harvester were 0.73 mW/cc and 0.096 mW/g, respectively. The EH developed in this study was compared with other configurations and types via metrics of mean square acceleration weighted power (MSAP) and MSAP density. Charging performance of the single crystal PMN-PT based EH was evaluated by recharging a battery. In addition, the effect of the capacitance of the rectifier circuit on charging time was also investigated. Finally, the EH was also used to drive an accelerometer using only energy that was harvested from ambient vibration. The accelerometer was continuously and successfully operated when the persistent excitation level exceeded 0.1 g.

1.
Wang
,
L.
, and
Yuan
,
F. G.
, 2008, “
Vibration Energy Harvesting by Magnetostrictive Material
,”
Smart Mater. Struct.
0964-1726,
17
, pp.
1
14
.
2.
Staley
,
M. E.
, and
Flatau
,
A. B.
, 2005, “
Characterization of Energy Harvesting Potential of Terfenol-D and Galfenol
,”
Proc. SPIE
0277-786X,
5764
, pp.
630
640
.
3.
Glynne-Jones
,
P.
,
Tudor
,
M. J.
,
Beeby
,
S. P.
, and
White
,
N. M.
, 2004, “
An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems
,”
Sens. Actuators, A
0924-4247,
110
, pp.
344
349
.
4.
Cheng
,
S.
,
Wang
,
N.
, and
Arnold
,
D. P.
, 2007, “
Modeling of Magnetic Vibrational Energy Harvesters Using Equivalent Circuit Representations
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2328
2335
.
5.
Nakano
,
K.
,
Elliott
,
S. J.
, and
Rustighi
,
E.
, 2007, “
A Unified Approach to Optimal Conditions of Power Harvesting Using Electromagnetic and Piezoelectric Transducers
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
948
958
.
6.
Kuehne
,
I.
,
Frey
,
A.
,
Marinkovic
,
D.
,
Eckstein
,
G.
, and
Seidel
,
H.
, 2008, “
Power MEMS—A Capacitive Vibration-to-Electrical Energy Converter With Built-In Voltage
,”
Sens. Actuators, A
0924-4247,
142
, pp.
263
269
.
7.
Peano
,
F.
, and
Tambosso
,
T.
, 2005, “
Design and Optimization of a MEMS Electret-Based Capacitive Energy Scavenger
,”
J. Micromech. Microeng.
0960-1317,
14
(
3
), pp.
429
435
.
8.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
Flotow
,
A. V.
, 1990, “
Modeling of Piezoelectric Actuator Dynamics for Active Structural Control
,” AIAA Struct. Struct. Dyn. Mat. Conf., pp.
2242
2256
.
9.
Richards
,
C. D.
,
Anderson
,
M. J.
,
Bahr
,
D. F.
, and
Rechards
,
R. F.
, 2004, “
Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
717
721
.
10.
Williams
,
C. B.
, and
Yates
,
R. B.
, 1996, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators, A
0924-4247,
52
, pp.
8
11
.
11.
Green
,
C.
,
Mossi
,
K. M.
, and
Bryant
,
R. G.
, 2005, “
Scavenging Energy From Piezoelectric Materials for Wireless Sensor Applications
,”
ASME Proceedings of the IMECE
, Paper No. IMECE2005-80426, pp.
1
7
.
12.
Elvin
,
N. G.
,
Elvin
,
A. A.
, and
Specto
,
M.
, 2001, “
A Self-Powered Mechanical Strain Energy Sensor
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
293
299
.
13.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
,
40
, pp.
49
58
. 0039-2103
14.
Roundy
,
S.
, and
Wright
,
P. K.
, 2004, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
1131
1142
.
15.
Choi
,
W. J.
,
Jeon
,
Y.
,
Jeong
,
J. H.
,
Sood
,
R.
, and
Kim
,
S. G.
, 2006, “
Energy Harvesting MEMS Device Based on Thin Film Piezoelectric Cantilevers
,”
J. Electroceram.
1385-3449,
17
(
2
), pp.
543
548
.
16.
Ottman
,
G. K.
,
Hofmann
,
H.
,
Bhatt
,
A. C.
, and
Lesieutre
,
G. A.
, 2002, “
Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply
,”
IEEE Trans. Power Electron.
0885-8993,
17
(
5
), pp.
669
676
.
17.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
, 2005, “
Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
799
807
.
18.
Sodano
,
H. A.
,
Lloyd
,
J. L.
, and
Inman
,
D. J.
, 2006, “
An Experimental Comparison Between Several Active Composite Actuators for Power Generation
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
1211
1216
.
19.
Song
,
H. J.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2008, “
Energy Harvesting Devices Using Macro-Fiber Composite Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X, accepted.
20.
Ren
,
K.
,
Liu
,
Y.
,
Geng
,
S.
,
Hofmann
,
H. F.
, and
Zhang
,
Q. M.
, 2006, “
Single Crystal PMN-PT/Epoxy 1–3 Composite for Energy-Harvesting Application
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
53
(
3
), pp.
631
638
.
21.
Badel
,
A.
,
Benayad
,
A.
,
Lebrun
,
L.
,
Richard
,
C.
, and
Guyomar
,
D.
, 2006, “
Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
53
(
4
), pp.
673
684
.
22.
Hong
,
Y. K.
, and
Moon
,
K. S.
, 2005, “
Single Crystal Piezoelectric Transducers to Harvest Vibration Energy
,”
Proc. SPIE
0277-786X,
6048
, pp.
6080E1
6080E7
.
23.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
, 2006, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
0957-0233,
17
, pp.
R175
R195
.
24.
Beeby
,
S. P.
,
Torah
,
R. N.
,
Tudor
,
M. J.
,
Glynne-Jones
,
P.
,
O’Donnell
,
T.
,
Saha
,
C. R.
, and
Roy
,
S.
, 2007, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
1257
1265
.
25.
Park
,
S. E.
, and
Shrout
,
T. R.
, 1997, “
Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals
,”
J. Appl. Phys.
0021-8979,
82
(
4
), pp.
1804
1811
.
26.
Levy
,
M.
,
Vanga
,
R.
,
Moon
,
K. S.
,
Park
,
H. K.
, and
Hong
,
Y. K.
, 2004, “
Single-Crystal Relaxor Ferroelectric Piezoactuators With Interdigitated Electrodes
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
51
(
12
), pp.
1593
1599
.
27.
Paddan
,
G. S.
, and
Griffin
,
M. J.
, 2002, “
Evaluation of Whole-Body Vibration in Vehicles
,”
J. Sound Vib.
0022-460X,
253
(
1
), pp.
195
213
.
28.
Venkatesan
,
C.
, and
Udayasankar
,
A.
, 1999, “
Selection of Sensor Location for Active Vibration Control of Helicopter Fuselages
,”
J. Aircr.
0021-8669,
36
(
2
), pp.
434
442
.
29.
Ching
,
N. N. H.
,
Wong
,
H. Y.
,
Li
,
W. J.
,
Leong
,
P. H. W.
, and
Wen
,
Z.
, 2002, “
A Laser-Micromachined Vibrational to Electrical Power Transducer for Wireless Sensing Systems
,”
Sens. Actuators, A
0924-4247,
97–98
, pp.
685
690
.
30.
Glynne-Jones
,
P.
, 2001, “
Vibration Powered Generators for Self-Powered Microsystems
,” Ph.D. thesis, Department of Electronics and Computer Science, University of Southampton, England, UK.
31.
Perpetuum Ltd.
, 2009, PMG17 data, http://www.perpetuum.co.ukhttp://www.perpetuum.co.uk.
32.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Marioli
,
D.
, and
Taroni
,
A.
, 2008, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators, A
0924-4247,
142
, pp.
329
335
.
33.
Glynne-Jones
,
P.
,
Beeby
,
S. P.
, and
White
,
N. M.
, 2001, “
Towards a Piezoelectric Vibration Powered Microgenerator
,”
IEE Proc.: Sci., Meas. Technol.
1350-2344,
148
(
2
), pp.
68
72
.
34.
Despesse
,
G.
,
Jager
,
T.
,
Chaillout
,
J.
,
Leger
,
J.
,
Vassilev
,
A.
,
Basrour
,
S.
, and
Chalot
,
B.
, 2005, “
Fabrication and Characterisation of High Damping Electrostatic Micro Devices for Vibration Energy Scavenging
,”
Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
, Montreux, Switzerland, pp.
386
390
.
35.
Mitcheson
,
P.
,
Stark
,
B.
,
Miao
,
P.
,
Yeatman
,
E.
,
Holmes
,
A.
, and
Green
,
T.
, 2003, “
Analysis and Optimisation of MEMS On-Chip Power Supply for Self Powering of Slow Moving Sensors
,”
Proceedings of the Eurosensors XVII
, Guimaraes, Portugal, pp.
30
31
.
You do not currently have access to this content.