A magnetorheological elastomer (MRE) is comprised of ferromagnetic particles aligned in a polymer medium by exposure to a magnetic field. The structures of the magnetic particles within elastomers are very sensitive to the external stimulus of either mechanical force or magnetic field, which result in multiresponse behaviors in a MRE. In this study, the sensing properties of MREs are investigated through experimentally characterizing the electrical properties of MRE materials and their interfaces with external stimulus (magnetic field or stress/strain). A phenomenological model is proposed to understand the impedance response of MREs under mechanical loads and magnetic fields. Results show that MRE samples exhibit significant changes in measured values of impedance and resistance in response to compressive deformation, as well as the applied magnetic field.

1.
Wang
,
X.
, and
Gordaninejad
,
F.
, 2007, “
Magnetorheological Materials and Their Applications: A Review
,”
Intelligent Materials
,
M.
Shahinpoor
and
H. -J.
Schneider
, eds.,
Royal Society of Chemistry Publishing
,
Cambridge, UK
, Chap. 14, pp.
339
385
.
2.
Ginder
,
J. M.
,
Clark
,
S. M.
,
Schlotter
,
W. F.
, and
Nichols
,
M. E.
, 2002, “
Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
0217-9792,
16
(
17–18
), pp.
2412
2418
.
3.
Martin
,
J. E.
,
Anderson
,
R. A.
, and
Read
,
D.
, 2006, “
Magnetostriction of Field-Structured Magnetoelastomers
,”
Phys. Rev. E
1063-651X,
74
(
5
), p.
051507
.
4.
Ginder
,
J. M.
,
Nicholes
,
M. E.
,
Elie
,
L. D.
, and
Tardiff
,
J. L.
, 1999, “
Magnetorheological Elastomers: Properties and Applications
,”
Proc. SPIE
0277-786X,
3675
, pp.
131
138
.
5.
Martin
,
J. E.
,
Anderson
,
R. A.
,
Odinek
,
J.
,
Adolf
,
D.
,
Williamson
,
J.
, 2003, “
Controlling Percolation in Field-Structured Particle Composites: Observations of Giant Thermoresistance, Piezoresistance, and Chemiresistance
,”
Phys. Rev. B
0163-1829,
67
(
9
), p.
094207
.
6.
Jolly
,
M. R.
,
Carlson
,
J. D.
,
Munoz
,
B. C.
, and
Bullions
,
T. A.
, 1996, “
The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
, pp.
613
622
.
7.
Wang
,
X.
,
Gordaninejad
,
F.
,
Caglar
,
M.
,
Liu
,
Y.
,
Sutrisno
,
J.
, and
Fuchs
,
A.
, 2008, “
Sensing Behavior of Magneto-Rheological Elastomers
,”
Proceedings of the Fifth ANCRiSST Workshop on Advanced Smart Materials and Smart Structures Technology
, Tokyo, Japan.
8.
Deng
,
H. X.
,
Gong
,
X. L.
, and
Wang
,
H. L.
, 2006, “
Development of an Adaptive Tuned Vibration Absorber With Magnetorheological Elastomer
,”
Smart Mater. Struct.
0964-1726,
15
(
5
), pp.
N111
N116
.
9.
Ginder
,
J. M.
,
Nicholes
,
M. E.
, and
Clark
,
S. M.
, 2000, “
Controllable-Stiffness Components Based on Magnetorheological Elastomers
,”
Proc. SPIE
0277-786X,
3985
, pp.
418
425
.
10.
Gong
,
X. L.
,
Chen
,
L.
, and
Li
,
J. F.
, 2007, “
Study of Utilizable Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
0217-9792,
21
(
28&29
), pp.
4875
4882
.
11.
Elie
,
L. D.
,
Ginder
,
J. M.
,
Mark
,
J. S.
, and
Nichols
,
M. E.
, 1998, “
Method and Apparatus for Measuring Displacement and Force
,” U.S. Patent No. 5,814,999.
12.
Jin
,
S.
,
Tiefel
,
T.
,
Wolfe
,
R.
,
Sherwood
,
R. C.
, and
Mottine
,
J. J.
, 1992, “
Optically Transparent, Electrically Conductive Composite Medium
,”
Science
0036-8075,
255
, pp.
446
448
.
13.
Martin
,
J. E.
, 2005, “
Using Triaxial Magnetic Fields to Create Optimal Particle Composites
,”
Composites, Part A
1359-835X,
36
(
4
), pp.
545
548
.
14.
McLachlan
,
D. S.
, 2000, “
Analytical Functions for the dc and ac Conductivity of Conductor-Insulator Composites
,”
J. Electroceram.
1385-3449,
5
(
2
), pp.
93
110
.
15.
Ozyurt
,
N.
,
Mason
,
T. O.
, and
Shah
,
S. P.
, 2007, “
Correlation of Fiber Dispersion, Rheology and Mechanical Performance of FRCs
,”
Cem. Concr. Compos.
0958-9465,
29
(
2
), pp.
70
79
.
16.
Chen
,
P. W.
, and
Chung
,
D. D. L.
, 1996, “
Concrete as a New Strain Stress Sensor
,”
Composites, Part B
1359-8368,
27
(
1
), pp.
11
23
.
17.
Woo
,
L. Y.
,
Wansom
,
S.
,
Hixson
,
A. D.
,
Campo
,
M. A.
, and
Mason
,
T. O.
, 2003, “
A Universal Equivalent Circuit Model for the Impedance Response of Composites
,”
J. Mater. Sci.
0022-2461,
38
(
10
), pp.
2265
2270
.
18.
Panina
,
L. V.
,
Mohri
,
K.
, and
Bushida
,
K.
, 1994, “
Giant Magneto-Impedance and Magneto-Inductive Effects in Amorphous-Alloys
,”
J. Appl. Phys.
0021-8979,
76
(
10
), pp.
6198
6203
.
19.
Baibich
,
M. N.
,
Broto
,
J. M.
,
Fert
,
A.
,
Vandau
,
F. N.
,
Petroff
,
F.
,
Eitenne
,
P.
,
Creuzet
,
G.
,
Friederich
,
A.
, and
Chazelas
,
J.
, 1988, “
Giant Magnetoresistance of (001)Fe/(001) Cr Magnetic Superlattices
,”
Phys. Rev. Lett.
0031-9007,
61
(
21
), pp.
2472
2475
.
20.
Ramirez
,
A. P.
, 1997, “
Colossal Magnetoresistance
,”
J. Phys.: Condens. Matter
0953-8984,
9
, pp.
8171
8199
.
21.
Varfolomeev
,
A. E.
,
Godovskii
,
D. Y.
, and
Kapustin
,
G. A.
, 1998, “
Giant Negative Magnetoresistance in a Composite System Based on Fe3O4 Nanocrystals in a Polymer Matrix
,”
JETP Lett.
0021-3640,
67
(
1
), pp.
39
42
.
22.
Guo
,
Z. H.
,
Park
,
S.
, and
Hahn
,
H. T.
, 2007, “
Giant Magnetoresistance Behavior of an Iron/Carbonized Polyurethane Nanocomposite
,”
Appl. Phys. Lett.
0003-6951,
90
(
5
), p.
053111
.
You do not currently have access to this content.