We present a framework for the design of a compliant system, i.e., the concurrent design of a compliant mechanism with embedded actuators and sensors. Our methods simultaneously synthesize optimal structural topology and component placement for maximum energy efficiency and adaptive performance, while satisfying various weight and performance constraints. The goal of this research is to lay an algorithmic framework for distributed actuation and sensing within a compliant active structure. Key features of the methodology include (1) the simultaneous optimization of the location, orientation, and size of actuators (and sensors) concurrent with the compliant transmission topology, and (2) the implementation of controllability and observability concepts (both arising from consideration of control) in compliant systems design. The methods used include genetic algorithms, graph searches for connectivity, and multiple load cases implemented with linear finite element analysis. Actuators, modeled as both force generators and structural compliant elements, are included as topology variables in the optimization. The results from the controllability problem are used to motivate and describe the analogous extension to observability for sensing. Results are provided for several studies, including (1) concurrent actuator placement and topology design for a compliant amplifier, (2) a shape-morphing aircraft wing demonstration with three controlled output nodes, and (3) a load-distribution sensing wing structure with internal sensors. Central to this method is the concept of structure/component orthogonality, which refers to the unique system response for each component (actuator or sensor) it contains.

1.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mech. Struct. Mach.
0890-5452,
31
(
2
), pp.
151
179
.
2.
Lu
,
K. J.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
6
), pp.
379
391
.
3.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
2
), pp.
238
245
.
4.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Strength Considerations
,”
Mech. Struct. Mach.
0890-5452,
29
(
2
), pp.
199
221
.
5.
Frecker
,
M.
, 2003, “
Recent Advances in Optimization of Smart Structures and Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
4–5
), pp.
207
216
.
6.
Krishnan
,
G.
, and
Anathasuresh
,
G. K.
, 2008, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
102304
.
7.
Padula
,
S.
, and
Kincaid
,
R.
, 1999, “
Optimization Strategies for Sensor and Actuator Placement
,” NASA Technical Paper No. TM-1999-209126.
8.
Hać
,
A.
, and
Liu
,
L.
, 1993, “
Sensor and Actuator Location in Motion Control of Flexible Structures
,”
J. Sound Vib.
0022-460X,
167
(
2
), pp.
239
261
.
9.
Sadri
,
A. M.
,
Wright
,
J. R.
, and
Wynne
,
R. J.
, 1999, “
Modelling and Optimal Placement of Piezoelectric Actuators in Isotropic Plates Using Genetic Algorithms
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
490
498
.
10.
Bruant
,
I.
,
Coffignal
,
G.
,
Lene
,
F.
, and
Verge
,
M.
, 2001, “
A Methodology for Determination of Piezoelectric Actuator and Sensor Location on Beam Structures
,”
J. Sound Vib.
0022-460X,
243
(
5
), pp.
861
882
.
11.
Liu
,
X.
,
Begg
,
D. W.
, and
Matravers
,
D. R.
, 1997, “
Optimal Topology/Actuator Placement Design of Structures Using SA
,”
J. Aerosp. Eng.
0893-1321,
10
(
3
), pp.
119
125
.
12.
Begg
,
D. W.
, and
Liu
,
X.
, 2000, “
On Simultaneous Optimization of Smart Structures—Part II: Algorithms and Examples
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
184
(
1
), pp.
25
37
.
13.
Pai
,
M. C.
, and
Sinha
,
A.
, 2007, “
Sliding Mode Output Feedback Control of Vibration in a Flexible Structure
,”
J. Dyn. Syst., Meas., Control
0022-0434,
129
, pp.
851
855
.
14.
Saggere
,
L.
, and
Kota
,
S.
, 1999, “
Static Shape Control of Smart Structures Using Compliant Mechanisms
,”
AIAA J.
0001-1452,
37
(
5
), pp.
572
578
.
15.
Lu
,
K.
, 2004, “
Synthesis of Shape Morphing Compliant Mechanisms
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
16.
Silva
,
E. C. N.
,
Nishiwaki
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topology Optimization Design of Flextensional Actuators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
47
(
3
), pp.
657
671
.
17.
Anusonti-Inthra
,
P.
,
Gandhi
,
F.
, and
Frecker
,
M.
, 2003, “
Design of a Conformable Rotor Airfoil Using Distributed Piezoelectric Actuation
,” ASME Paper No. IMECE2003-42659.
18.
Langelaar
,
M.
, and
Van Keulen
,
F.
, 2004, “
Design Optimization of Shape Memory Alloy Structures
,”
Proceedings of the Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, NY, Aug. 30–31, Paper No. AIAA-2004-4414.
19.
Bharti
,
S.
, and
Frecker
,
M.
, 2003, “
Compliant Mechanical Amplifier Design Using Multiple Optimally Placed Actuators
,” ASME Paper No. IMECE2003-42658.
20.
Buehler
,
M. J.
,
Bettig
,
B.
, and
Parker
,
G. G.
, 2004, “
Topology Optimization of Smart Structures Using a Homogenization Approach
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
, pp.
655
667
.
21.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Nishiwaki
,
S.
, 2007, “
Optimum Placement of Piezoelectric Material in Piezoactuator Design
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
207
220
.
22.
Bharti
,
S.
,
Frecker
,
M.
,
Lesieutre
,
G.
, and
Ramrakhyani
,
D.
, 2005, “
Optimal Design of Tendon-Actuated Morphing Structures: Nonlinear Analysis and Parallel Algorithm
,”
Proc. SPIE
0277-786X,
5757
, pp.
132
143
.
23.
Johnson
,
T.
, and
Frecker
,
M.
, 2004, “
Optimal Placement of Active Material Actuators Using Genetic Algorithm
,”
Proc. SPIE
0277-786X,
5383
, pp.
221
231
.
24.
Hetrick
,
J.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
229
234
.
25.
Wang
,
N. F.
, and
Tai
,
K.
, 2008, “
Design of Grip-and-Move Manipulators Using Symmetric Path Generating Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
112305
.
26.
Tantanawat
,
T.
, and
Kota
,
S.
, 2007, “
Design of Compliant Mechanisms for Minimizing Input Power in Dynamic Applications
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
1064
1075
.
27.
Eiben
,
A.
, and
Smith
,
J.
, 2003,
Introduction to Evolutionary Computing
,
Springer
,
New York
.
28.
Goldberg
,
D. E.
, 1989,
Genetic Algorithm in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
29.
Kota
,
S.
,
Hetrick
,
J.
,
Rodgers
,
S.
, and
Li
,
Z.
, 2001, “
Compliant Displacement Amplification Apparatus for Micro Electro Mechanical Systems
,” U.S. Patent No. 6,175,170.
30.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
, 1999, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
4
), pp.
396
408
.
31.
Yu
,
J.
,
Imbimbo
,
M.
, and
Betti
,
R.
, 2009, “
Identification of Linear Structural Systems With a Limited Set of Input-Output Measurements
,”
ASME J. Appl. Mech.
0021-8936,
76
, p.
031005
.
32.
Malukhin
,
K.
, and
Ehmann
,
K. F.
, 2008, “
An Experimental Investigation of the Feasibility of ‘Self-Sensing’ Shape Memory Alloy Based Actuators
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031109
.
33.
Peshkin
,
M.
, 2004, “
Force Sensors
,” U.S. Patent No. 20,040,261,544.
You do not currently have access to this content.