Abstract

Additive manufacturing (AM) is used to produce load-bearing, safety-critical components in industries like aerospace, automotive, and medical devices. Designers can create AM components with complex internal features, organic topologies, and lattice structures to reduce part mass or part count. However, such complex features can make designs difficult or impossible to inspect using mature nondestructive testing (NDT) methods. Professional organizations suggest designers keep quality assurance and quality control (QA/QC) in mind early in the design process. The Design for Inspectability (DfI) framework is suggested as a way of meeting the need for early-stage QA/QC considerations. This work presents a case study, where a group of designers considered one type of NDT, known as Pulse-Echo Ultrasonic (PEU) testing. Using heuristics derived from relevant literature, designers were able to create designs with increased inspectability. This improved inspectability came at the cost of other design objectives, however, such as strength and mass. This implies that certain design objectives may be inversely related to increased inspectability, raising significant concerns for the field. This work marks the first step toward mapping out the trade-offs between inspection and performance objectives.

References

1.
Tofail
,
S. A. M.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
2.
Nickels
,
L.
,
2015
, “
AM and Aerospace: An Ideal Combination
,”
Met. Powder Rep.
,
70
(
6
), pp.
300
303
.
3.
Najmon
,
J. C.
,
Raeisi
,
S.
, and
Tovar
,
A.
,
2019
, “
Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry
,”
Additive Manufacturing for the Aerospace Industry
,
1
(
1
), pp.
7
31
.
4.
Liu
,
R.
,
Wang
,
Z.
,
Sparks
,
T.
,
Liou
,
F.
, and
Newkirk
,
J.
,
2017
, “
Aerospace Applications of Laser Additive Manufacturing
,”
Laser Addit. Manuf.
,
1
(
1
), pp.
351
371
.
5.
Patalas-Maliszewska
,
J.
,
Topczak
,
M.
, and
Kłos
,
S.
,
2020
, “
The Level of the Additive Manufacturing Technology Use in Polish Metal and Automotive Manufacturing Enterprises
,”
Appl. Sci.
,
10
(
3
), p.
735
.
6.
Ganesh Sarvankar
,
S.
, and
Yewale
,
S. N.
,
2019
, “
Additive Manufacturing in Automobile Industry
,”
Int. J. Res. Aeronaut. Mech. Eng.
,
7
(
4
), pp.
1
10
.
7.
Zanetti
,
E. M.
,
Aldieri
,
A.
,
Terzini
,
M.
,
Calì
,
M.
,
Franceschini
,
G.
, and
Bignardi
,
C.
,
2017
, “
Additively Manufactured Custom Load-Bearing Implantable Devices: Grounds for Caution
,”
Australas. Med. J.
,
10
(
8
), pp.
694
700
.
8.
Wood
,
L.
,
2017
, “
3D Printing Market (2017–2022): Analysis By Material, Printer, Form, Industry Vehicle, Application & Geography—Research and Markets
,”
Businesswire
,
1
(
1
), p.
1
.
9.
America Makes, and AMSC
,
2018
, “Standardization Roadmap for Additive Manufacturing—Version 2.0,” 2(June), pp.
1
269
.
10.
ASTM
,
2017
,
Global Leader in Additive Manufacturing Standards
,
ASTM International
,
West Conshohocken, PA
.
11.
Schulenburg
,
L.
, and
Herold
,
F.
,
2020
, “
Inspection of Additive Manufactured Parts Using Computed Tomography : Part 1
,”
NDT Tech.
,
19
(
4
), pp.
1
5
.
12.
Boyce
,
B. L.
,
Salzbrenner
,
B. C.
,
Rodelas
,
J. M.
,
Swiler
,
L. P.
,
Madison
,
J. D.
,
Jared
,
B. H.
, and
Shen
,
Y. L.
,
2017
, “
Extreme-Value Statistics Reveal Rare Failure-Critical Defects in Additive Manufacturing
,”
Adv. Eng. Mater.
,
19
(
8
), pp.
1
17
.
13.
Wang
,
Z.
,
Xie
,
M.
,
Li
,
Y.
,
Zhang
,
W.
,
Yang
,
C.
,
Kollo
,
L.
,
Eckert
,
J.
, and
Prashanth
,
K. G.
,
2020
, “
Premature Failure of an Additively Manufactured Material
,”
NPG Asia Mater.
,
12
(
1
), pp.
1
10
.
14.
du Plessis
,
A.
,
Yadroitsava
,
I.
, and
Yadroitsev
,
I.
,
2020
, “
Effects of Defects on Mechanical Properties in Metal Additive Manufacturing: A Review Focusing on X-Ray Tomography Insights
,”
Materials & Design
,
187
(
1
), p.
108385
.
15.
Yusuf
,
S. M.
,
Cutler
,
S.
, and
Gao
,
N.
,
2019
, “
Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry
,”
Metals
,
9
(
12
), pp.
12
86
.
16.
Koester
,
L. W.
,
Taheri
,
H.
,
Bigelow
,
T. A.
,
Collins
,
P. C.
, and
Bond
,
L. J.
,
2018
, “
Nondestructive Testing for Metal Parts Fabricated Using Powder-Based Additive Manufacturing
,”
Mater. Eval.
,
76
(
4
), pp.
514
524
.
17.
Li
,
Z.
,
Liu
,
X.
,
Wen
,
S.
,
He
,
P.
,
Zhong
,
K.
,
Wei
,
Q.
,
Shi
,
Y.
, and
Liu
,
S.
,
2018
, “
In Situ 3D Monitoring of Geometric Signatures in the Powder-Bed-Fusion Additive Manufacturing Process via Vision Sensing Methods
,”
Sensors
,
18
(
4
), pp.
1180
1190
.
18.
Imani
,
F.
,
Montazeri
,
M.
,
Yang
,
H.
,
Gaikwad
,
A.
,
Rao
,
P.
, and
Reutzel
,
E.
,
2018
, “
Layerwise In-Process Quality Monitoring in Laser Powder Bed Fusion
,”
Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
.
19.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.
20.
Zenzinger
,
G.
,
Bamberg
,
J.
,
Ladewig
,
A.
,
Hess
,
T.
,
Henkel
,
B.
, and
Satzger
,
W.
,
2015
, “
Process Monitoring of Additive Manufacturing by Using Optical Tomography
,”
AIP Conf. Proc.
,
1650
, pp.
164
170
.
21.
Farzadi
,
A.
,
Solati-Hashjin
,
M.
,
Asadi-Eydivand
,
M.
, and
Osman
,
N. A. A.
,
2014
, “
Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering
,”
PLoS One
,
9
(
9
), p.
e108252
.
22.
Moylan
,
S.
,
Cooke
,
A.
, and
Jurrens
,
K.
,
2012
, “A Review of Test Artifacts for Additive Manufacturing,” NISTIR 7858.
23.
National Institute of Standards and Technology
,
2013
, Measurement Science Roadmap for Metal-Based Additive Manufacturing.
24.
Holzmond
,
O.
, and
Li
,
X.
,
2017
, “
In Situ Real Time Defect Detection of 3D Printed Parts
,”
Addit. Manuf.
,
17
(
1
), pp.
135
142
.
25.
De Chiffre
,
L.
,
Carmignato
,
S.
,
Kruth
,
J. P.
,
Schmitt
,
R.
, and
Weckenmann
,
A.
,
2014
, “
Industrial Applications of Computed Tomography
,”
CIRP Ann.—Manuf. Technol.
,
63
(
2
), pp.
655
677
.
26.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111011
.
27.
Mazumder
,
J.
,
2015
, “
Design for Metallic Additive Manufacturing Machine With Capability for ‘Certify as You Build
,”
Procedia CIRP
,
36
(
1
), pp.
187
192
.
28.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
.
29.
ASTM
,
2018
,
ASTM F3213-17-Standard Specification for Cobalt-28 Chromium-6 Molybdenum via Powder Bed Fusion
.
30.
ASTM International
,
2018
, “ASTM F3318-18, Standard for Additive Manufacturing—Finished Part Properties—Specification for AlSi10Mg With Powder Bed Fusion—Laser Beam,” i, p.
7
.
31.
F42.04, S.
,
2019
, “ASTM WK62867 New Guide for Additive Manufacturing—General Principles—Guide for Design for Material Extrusion Processes,” ASTM International.
32.
ASTM F3122
,
2014
, “Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes,” ASTM Stand., pp.
1
6
.
33.
ASTM F3302
,
2018
, “Standard for Additive Manufacturing—Finished Part Properties—Standard Specification for Titanium Alloys via Powder Bed Fusion,” ASTM Stand., (February), pp.
1
8
.
34.
Wells
,
L. J.
,
Camelio
,
J. A.
,
Williams
,
C. B.
, and
White
,
J.
,
2013
, “
Cyber-physical Security Challenges in Manufacturing Systems
,”
Manufacturing Lett.
,
2
(
2
), pp.
74
77
.
35.
Wannlund
,
W. R.
,
1968
, “The Impact of Inspectability Requirements on Spacecraft Design,” SAE Technical Paper.
36.
Stolt
,
R.
,
Elgh
,
F.
, and
Andersson
,
P.
,
2017
, “
Design for Inspection—Evaluating the Inspectability of Aerospace Components in the Early Stages of Design
,”
Procedia Manuf.
,
11
, pp.
1193
1199
.
37.
Migoun
,
N. P.
, and
Delenkovskii
,
N. V.
,
2009
, “
Improvement of Penetrant-Testing Methods
,”
J. Eng. Phys. Thermophys.
,
82
(
4
), pp.
734
742
.
38.
Boothroyd
,
G.
, and
Dewhurst
,
P.
,
1989
,
Product Design for Assembly
,
Boothroyd Dewhurst Inc.
,
Wakefield, RI
.
39.
Booth
,
J. W.
,
Alperovich
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2016
, “
The Design for Additive Manufacturing Worksheet
,”
Vol. 7, Proceedings of the 28th International Conference Design Theory Methodology
,
Charlotte, NC
,
Aug. 21–24
.
40.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
.
41.
Rentala
,
V. K.
,
Mylavarapu
,
P.
, and
Gautam
,
J. P.
,
2018
, “
Issues in Estimating Probability of Detection of NDT Techniques—A Model Assisted Approach
,”
Ultrasonics
,
87
(
1
), pp.
59
70
.
42.
Harding
,
C. A.
, and
Hugo
,
G. R.
,
2011
, “
Guidelines for Interpretation of Published Data on Probability of Detection for Nondestructive Testing
,”
Defense Science and Technology Organisation Victoria (Australia), Maritime Platforms Div.
,
1
(
1
), pp.
1
20
.
43.
American Society for Nondestructive Testing
, 2019
, “Introduction to Nondestructive Testing,” https://www.asnt.org/MajorSiteSections/About/Introduction_to_Nondestructive_Testing.aspx, Accessed March 10, 2021.
44.
Jolly
,
M.
,
Prabhakar
,
A.
,
Sturzu
,
B.
,
Hollstein
,
K.
,
Singh
,
R.
,
Thomas
,
S.
,
Foote
,
P.
, and
Shaw
,
A.
,
2015
, “
Review of Non-Destructive Testing (NDT) Techniques and Their Applicability to Thick Walled Composites
,”
Procedia CIRP
,
38
(
1
), pp.
129
136
.
45.
Khandkar
,
S. H.
,
1998
, “
Open Coding
,”
Basics Qual. Res.
,
1
(
1
), pp.
101
121
.
46.
Doggett
,
A. M.
,
2018
, “
Root Cause Analysis : A Framework Tool Selection
,”
Qual. Manag. J.
,
12
(
4
), pp.
34
45
.
47.
Sharratt
,
B. M.
,
2015
, “
Non-destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes: A Literature Review
,”
Dep. Natl. Def. Canada
,
55
, pp.
91
127
.
48.
1989
,
“Ultrasonic Inspection,” Metals Handbook: Volume 17 Nondestructive Evaluation
,
ASM International, Metals Park
,
OH
, pp.
231
278
.
49.
Everton
,
S. K.
,
Dickens
,
P.
,
Tuck
,
C.
, and
Dutton
,
B.
,
2016
, “
Identification of Sub-surface Defects in Parts Produced by Additive Manufacturing, Using Laser Generated Ultrasound
,”
Material Science Technology Conference and Exhibition. 2016, MS T 2016
, 1, pp.
141
148
.
50.
Lhémery
,
A.
,
Calmon
,
P.
,
Chatillon
,
S.
, and
Gengembre
,
N.
,
2002
, “
Modeling of Ultrasonic Fields Radiated by Contact Transducer in a Component of Irregular Surface
,”
Ultrasonics
,
40
(
1–8
), pp.
231
236
.
51.
Sanaei
,
N.
,
Fatemi
,
A.
, and
Phan
,
N.
,
2019
, “
Defect Characteristics and Analysis of Their Variability in Metal L-PBF Additive Manufacturing
,”
Mater. Des.
,
182
(
11
), p.
108091
.
52.
Rose
,
J.
,
Shin
,
H.
, and
Jeong
,
H.
,
2000
, “
Detection of Defects in a Thin Steel Plate Using Ultrasonic Guided Wave
,”
Proceedings of 15th World Conference on Non-destructive Testing
,
Rome
.
53.
Edalati
,
K.
,
Kermani
,
A.
,
Naderi
,
B.
, and
Panahi
,
B.
,
2005
, “
Defects Evaluation in Lamb Wave Testing of Thin Plates
,”
3rd MENDT—Middle East Nondestructive Test Conference and Exhibition (L).
,
Bahrain, Manama
,
Nov. 1–3
.
54.
Li
,
F.
,
Zhao
,
Y.
,
Cao
,
P.
, and
Hu
,
N.
,
2018
, “
Mixing of Ultrasonic Lamb Waves in Thin Plates With Quadratic Nonlinearity
,”
Ultrasonics
,
87
(
7
), pp.
33
43
.
55.
Pavlovic
,
M.
,
Takahashi
,
K.
, and
Muller
,
C.
,
2012
, “
Probability of Detection as a Function of Multiple Influencing Parameters
,”
Insight Non-Destructive Test. Cond. Monit.
,
54
(
11
), pp.
606
611
.
56.
Pavlovic
,
M.
,
Zoëga
,
A.
,
Zanotelli
,
C.
, and
Kurz
,
J. H.
,
2017
, “
Investigations to Introduce the Probability of Detection Method for Ultrasonic Inspection of Hollow Axles at Deutsche Bahn
,”
Procedia Struct. Integr.
,
4
(
1
), pp.
79
86
.
57.
Edalati
,
K.
,
Kermani
,
A.
,
Seiedi
,
M.
, and
Movafeghi
,
M.
,
2005
, “
Defect Detection in Thin Plates by Ultrasonic Lamb Wave Techniques
,”
Int. J. Mater. Prod. Technol.
,
27
(
3–4
), pp.
156
172
.
58.
Vezzetti
,
D. J.
,
1985
, “
Propagation of Bounded Ultrasonic Beams in Anisotropic Media
,”
J. Acoust. Soc. Am.
,
78
(
3
), pp.
1103
1108
.
59.
Scharrer
,
T.
,
Koch
,
A.
,
Fendt
,
K. T.
,
Rupitsch
,
S. J.
,
Sutor
,
A.
,
Ermert
,
H.
, and
Lerch
,
R.
,
2012
, “
Ultrasonic Defect Detection in Multi-Material, Axis-Symmetric Devices With an Improved Synthetic Aperture Focusing Technique (SAFT)
,”
IEEE International Ultrasonics Symposium, IUS
,
Dresden, Germany
,
Oct. 7–10
, pp.
1039
1042
.
60.
Chiou
,
C. P.
,
Margetan
,
F. J.
,
McKillip
,
M.
,
Engle
,
B. J.
, and
Roberts
,
R. A.
,
2016
, “
Techniques and Software Tools for Estimating Ultrasonic Signal-to-Noise Ratios
,”
AIP Conference Proceedings
,
Penang, Malaysia
,
Apr. 10–12
.
61.
Chang
,
J.
,
Zheng
,
C.
, and
Ni
,
Q. Q.
,
2006
, “
The Ultrasonic Wave Propagation in Composite Material and Its Characteristic Evaluation
,”
Compos. Struct.
,
75
(
1–4
), pp.
451
456
.
62.
Jasiūnienė
,
E.
,
Mažeika
,
L.
,
Samaitis
,
V.
,
Cicėnas
,
V.
, and
Mattsson
,
D.
,
2019
, “
Ultrasonic Non-destructive Testing of Complex Titanium/Carbon Fibre Composite Joints
,”
Ultrasonics
,
95
, pp.
13
21
.
63.
Netshidavhini
,
N.
, and
Mabuza
,
R. B.
,
2012
, “
Effects of Various Couplants on Carbon Steel and Aluminium Materials Using Ultrasonic Testing
,”
Proceedings of 18th World Conference on Nondestructive Test
,
Durban, South Africa
,
Apr. 16–20
, pp.
16
20
.
64.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
.
65.
Mahan
,
T.
,
Arguelles
,
A.
,
Stover
,
M.
, and
Menold
,
J.
,
2020
, “
Creating a Design for Inspectability Framework: Investigating Dfam Heuristics for Inspection Technologies Tobias
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 14–18
, pp.
1
15
.
66.
Palinkas
,
L. A.
,
Horwitz
,
S. M.
,
Green
,
C. A.
,
Wisdom
,
J. P.
,
Duan
,
N.
, and
Hoagwood
,
K.
,
2015
, “
Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research
,”
Administration and Policy in Mental Health and Mental Health Services Research
,
42
(
5
), pp.
533
544
.
67.
Vogt
,
W. P.
,
Gardner
,
D. C.
, and
Haeffele
,
L. M.
,
2012
, When to Use What Research Design.
68.
GE Jet Engine Bracket Challenge
. GrabCAD. https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
69.
Ellwood
,
S.
,
Pallier
,
G.
,
Snyder
,
A.
, and
Gallate
,
J.
,
2009
, “
The Incubation Effect: Hatching a Solution?
,”
Creat. Res. J.
,
21
(
1
), pp.
6
14
.
70.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
.
71.
Plocher
,
J.
, and
Panesar
,
A.
,
2019
, “
Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-Generation Lightweight Structures
,”
Materials & Design
,
183
(
1
), p.
108164
.
72.
Hedges
,
L.
, and
Olkin
,
I.
,
1985
,
Statistical Methods for Meta-Analysis
,
Academic Press
,
London
.
73.
2020
, “Titanium Ti-6Al-4V (Grade 5), Annealed Bar,” http://www.matweb.com/search/DataSheet.aspx?MatGUID=10d463eb3d3d4ff48fc57e0ad1037434
74.
Alleyne
,
D.
, and
Cawley
,
P.
,
1991
, “
A Two-Dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals
,”
J. Acoust. Soc. Am.
,
89
(
3
), pp.
1159
1168
.
75.
You
,
A.
,
Be
,
M. A. Y.
, and
In
,
I.
,
2015
, “Estimates of Signal-to-Microstructural-Noise Ratios in Ultrasonic Inspections of Metals,” 1193(2006).
76.
2009
, Nondestructive Evaluation System Reliability Assessment.
You do not currently have access to this content.