Abstract

Design-by-analogy (DbA) is a design methodology wherein new solutions, opportunities, or designs are generated in a target domain based on inspiration drawn from a source domain; it can benefit designers in mitigating design fixation and improving design ideation outcomes. Recently, the increasingly available design databases and rapidly advancing data science and artificial intelligence (AI) technologies have presented new opportunities for developing data-driven methods and tools for DbA support. In this study, we survey existing data-driven DbA studies and categorize individual studies according to the data, methods, and applications into four categories, namely, analogy encoding, retrieval, mapping, and evaluation. Based on both nuanced organic review and structured analysis, this paper elucidates the state-of-the-art of data-driven DbA research to date and benchmarks it with the frontier of data science and AI research to identify promising research opportunities and directions for the field. Finally, we propose a future conceptual data-driven DbA system that integrates all propositions.

References

1.
Ullman
,
D. G.
,
1992
,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
2.
Goel
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.
3.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Preinventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
.
4.
Linsey
,
J. S.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
.
5.
Murphy
,
J.
,
Fu
,
K.
,
Otto
,
K.
,
Yang
,
M.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101102
.
6.
Song
,
H.
, and
Fu
,
K.
,
2019
, “
Design-by-Analogy: Exploring for Analogical Inspiration With Behavior, Material, and Component-Based Structural Representation of Patent Databases
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021014
.
7.
Song
,
H.
,
Evans
,
J.
, and
Fu
,
K.
,
2020
, “
An Exploration-Based Approach to Computationally Supported Design-by-Analogy Using D3
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
34
(
4
), pp.
444
457
.
8.
Goel
,
A. K.
, and
Shu
,
L. H.
,
2015
, “
Analogical Thinking: An Introduction in the Context of Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
2, SI
), pp.
133
134
.
9.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
10.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
11.
Lauff
,
C.
,
Wee
,
Y. H.
,
Teo
,
K.
,
Png
,
S.
,
Swee
,
A.
, and
Wood
,
K. L.
,
2021
,
Design Innovation (DI) Methodology Handbook
,
Singapore University of Technology and Design (SUTD) and University of Colorado Denver (CU Denver)|Anschutz Medical Campus
,
Singapore
.
12.
Linic
,
S.
,
Lucanin
,
V.
,
Zivkovic
,
S.
,
Rakovic
,
M.
, and
Puharic
,
M.
,
2020
, “
Experimental and Numerical Methods for Concept Design and Flow Transition Prediction on the Example of the Bionic High-Speed Train
,”
Proceedings of the International Conference of Experimental and Numerical Investigations and New Technologies
,
Zlatibor Mountain, Serbia
,
June 30–July 3
.
13.
Jiang
,
S.
,
Luo
,
J.
,
Ruiz-pava
,
G.
,
Hu
,
J.
, and
Magee
,
C. L.
,
2021
, “
Deriving Design Feature Vectors for Patent Images Using Convolutional Neural Networks
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061405
.
14.
Sarica
,
S.
, and
Luo
,
J.
,
2021
, “
Design Knowledge Representation With Technology Semantic Network
,”
Proceedings of the Design Society: International Conference on Engineering Design (ICED)
,
Gothenburg, Sweden
,
Aug. 16–20
.
15.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowledge-Based Syst.
,
218
, p.
106873
.
16.
Kruiper
,
R.
,
Vincent
,
J.
,
Chen-Burger
,
J.
,
Desmulliez
,
M.
, and
Konstas
,
I.
,
2020
, “
In Layman’s Terms: Semi-Open Relation Extraction From Scientific Texts
,”
Annual Meeting of the Association for Computational Linguistics (ACL)
,
Online
,
July 5–10
.
17.
Han
,
J.
,
Shi
,
F.
,
Chen
,
L.
, and
Childs
,
P. R. N.
,
2018
, “
The Combinator: A Computer-Based Tool for Creative Idea Generation Based on a Simulation Approach
,”
Des. Sci.
,
4
(
e11
), pp.
1
34
.
18.
Han
,
J.
,
Shi
,
F.
,
Chen
,
L.
, and
Childs
,
P. R. N.
,
2018
, “
A Computational Tool for Creative Idea Generation Based on Analogical Reasoning and Ontology
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
462
477
.
19.
Han
,
J.
,
Forbes
,
H.
,
Shi
,
F.
,
Hao
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Data-Driven Approach for Creative Concept Generation and Evaluation
,”
Proceedings of the Design Society: DESIGN Conference
,
Online
,
Oct. 26–29
.
20.
Ross
,
B. H.
,
1987
, “
This Is Like That: The Use of Earlier Problems and the Separation of Similarity Effects
,”
J. Exp. Psychol. Learn. Mem. Cognit.
,
13
(
4
), p.
629
.
21.
Markman
,
A. B.
,
1997
, “
Constraints Analogical on Inference
,”
Cognit. Sci.
,
21
(
4
), pp.
373
418
.
22.
Markman
,
A. B.
, and
Gentner
,
D.
,
1993
, “
Structural Alignment During Similarity Comparisons
,”
Cognit. Psychol.
,
25
(
4
), pp.
431
467
.
23.
Kokinov
,
B.
, and
French
,
R. M.
,
2003
, “
Computational Models of Analogy-Making
,”
Encycl. Cognit. Sci.
,
1
, pp.
113
118
.
24.
Hall
,
R. P.
,
1989
, “
Computational Approaches to Analogical Reasoning: A Comparative Analysis
,”
Artif. Intell.
,
39
(
1
), pp.
39
120
.
25.
French
,
M. J.
,
1985
,
Conceptual Design for Engineers
,
Springer
,
New York
.
26.
Markman
,
A. B.
,
Wood
,
K. L.
,
Linsey
,
J. S.
,
Murphy
,
J. T.
, and
Laux
,
J.
,
2009
, “
Supporting Innovation by Promoting Analogical Reasoning
,”
Tools Innov.
,
1
(
9
), pp.
85
104
.
27.
Gentner
,
D.
, and
Smith
,
L. A.
,
2013
,
The Oxford Handbook of Cognitive Psychology
,
D.
Reisberg
, ed.,
Oxford University Press
,
Oxford, UK
, pp.
668
681
.
28.
Ward
,
T. B.
, and
Kolomyts
,
Y.
,
2010
,
The Cambridge Handbook of Creativity
,
J. C.
Kaufman
and
R. J.
Sternberg
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
93
112
.
29.
Hey
,
J.
,
Linsey
,
J.
,
Agogino
,
A. M.
, and
Wood
,
K. L.
,
2008
, “
Analogies and Metaphors in Creative Design
,”
Int. J. Eng. Educ.
,
24
(
2
), pp.
283
294
.
30.
Verhaegen
,
P. A.
,
Joris
,
D.
,
Vandevenne
,
D.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2011
, “
Identifying Candidates for Design-by-Analogy
,”
Comput. Ind.
,
62
(
4
), pp.
446
459
.
31.
Gentner
,
D.
, and
Markman
,
A. B.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(
1
), pp.
45
56
.
32.
Chalmers
,
D. J.
,
French
,
R. M.
, and
Hofstadter
,
D. R.
,
1992
, “
High-Level Perception, Representation, and Analogy: A Critique of Artificial Intelligence Methodology
,”
J. Exp. Theor. Artif. Intell.
,
4
(
3
), pp.
185
211
.
33.
Evans
,
T. G.
,
1964
, “A Program for the Solution of a Class of Geometric-Analogy Intelligence-Test Questions,”
Semantic Information Processing
,
M.
Minsky
, ed.,
MIT Press
,
Cambridge, MA
, pp.
271
353
.
34.
Hummel
,
J. E.
, and
Holyoak
,
K. J.
,
1997
, “
Distributed Representations of Structure: A Theory of Analogical Access and Mapping
,”
Psychol. Rev.
,
104
(
3
), p.
427
466
.
35.
Kokinov
,
B.
, and
Petrov
,
A.
,
2000
, “
Dynamic Extension of Episode Representation in Analogy-Making in AMBR
,”
Proceedings of the 22nd Annual Conference of the Cognitive Science Society (CogSci)
,
Philadelphia, PA
,
Aug. 13–15
, pp.
274
279
.
36.
Grace
,
K.
,
Gero
,
J.
, and
Saunders
,
R.
,
2015
, “
Interpretation-Driven Mapping: A Framework for Conducting Search and Rerepresentation in Parallel for Computational Analogy in Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
2, SI
), pp.
185
201
.
37.
French
,
R. M.
,
2002
, “
The Computational Modeling of Analogy-Making
,”
Trend Cognit. Sci.
,
6
(
5
), pp.
200
205
.
38.
Gill
,
A. S.
,
Tsoka
,
A. N.
, and
Sen
,
C.
,
2019
, “
Dimensions of Product Similarity in Design by Analogy: An Exploratory Study
,”
Proceedings of the 2019 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Anaheim, CA
,
Aug. 18–21
, p.
V007T06A010
.
39.
Tsoka
,
A. N.
,
Tribaldos
,
J. A.
, and
Sen
,
C.
,
2020
, “
Dimensions of Similarity Used to Identify Products as Sources of Analogy
,”
Proceedings of the 2020 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), Virtual, Online
,
Aug. 17–19
, p.
V008T08A009
.
40.
Srinivasan
,
V.
,
Song
,
B.
,
Luo
,
J.
,
Subburaj
,
K.
,
Elara
,
M. R.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Does Analogical Distance Affect Performance of Ideation?
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071101
.
41.
Song
,
B.
,
Srinivasan
,
V.
, and
Luo
,
J.
,
2017
, “
Patent Stimuli Search and Its Influence on Ideation Outcomes
,”
Des. Sci.
,
3
(
e25
), pp.
1
25
.
42.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.
43.
Chiu
,
I.
, and
Shu
,
L. H.
,
2012
, “
Investigating Effects of Oppositely Related Semantic Stimuli on Design Concept Creativity
,”
J. Eng. Des.
,
23
(
4
), pp.
271
296
.
44.
Malaga
,
R. A.
,
2000
, “
The Effect of Stimulus Modes and Associative Distance in Individual Creativity Support Systems
,”
Decis. Support Syst.
,
29
(
2
), pp.
125
141
.
45.
Enkel
,
E.
, and
Gassmann
,
O.
,
2010
, “
Creative Imitation: Exploring the Case of Cross-Industry Innovation
,”
R&D Manage.
,
40
(
3
), pp.
256
270
.
46.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
85
100
.
47.
Atilola
,
O.
, and
Linsey
,
J.
,
2015
, “
Representing Analogies to Influence Fixation and Creativity: A Study Comparing Computer-Aided Design, Photographs, and Sketches
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
2, SI
), pp.
161
171
.
48.
Song
,
H. I.
,
Lopez
,
R.
,
Fu
,
K.
, and
Linsey
,
J.
,
2018
, “
Characterizing the Effects of Multiple Analogs and Extraneous Information for Novice Designers in Design-by-Analogy
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031101
.
49.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2008
, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
,
29
(
3
), pp.
203
221
.
50.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2015
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
.
51.
Moreno
,
D. P.
,
Blessing
,
L. T.
,
Yang
,
M. C.
,
Hernández
,
A. A.
, and
Wood
,
K. L.
,
2016
, “
Overcoming Design Fixation: Design by Analogy Studies and Nonintuitive Findings
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
30
(
2
), pp.
185
199
.
52.
Ward
,
T. B.
,
1998
,
Advances in Analogy Research: Integration of Theory and Data From the Cognitive
,
K. J.
Holyoak
,
D.
Gentner
, and
B. N.
Kokinov
, eds.,
New Bulgarian University
,
Sofia
, pp.
221
230
.
53.
Siddharth
,
L.
, and
Chakrabarti
,
A.
,
2018
, “
Evaluating the Impact of Idea-Inspire 4.0 on Analogical Transfer of Concepts
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
431
448
.
54.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
55.
Shi
,
F.
,
Chen
,
L.
,
Han
,
J.
, and
Childs
,
P.
,
2017
, “
A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111402
.
56.
Goel
,
A.
,
Bhatta
,
S.
, and
Stroulia
,
E.
,
1997
, “KRITIK: An Early Case-Based Design System,”
Issues and Applications of Case-Based Reasoning in Design
,
M. L.
Maher
, and
P.
Pu
, eds.,
Erlbaum
,
Hillsdale, NJ
, pp.
87
132
.
57.
Bhatta
,
S. R.
, and
Goel
,
A. K.
,
1996
, “
From Design Experiences to Generic Mechanisms: Model-Based Learning in Analogical Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
2
), pp.
131
136
.
58.
Huhns
,
M. N.
, and
Acosta
,
R. D.
,
1988
, “
Argo: A System for Design by Analogy
,”
The 4th Conference on Artificial Intelligence Applications
,
San Diego, CA
,
Mar. 14–18
, pp.
146
151
.
59.
Qian
,
L.
, and
Gero
,
J. S.
,
1996
, “
Function-Behavior-Structure Paths and Their Role in Analogy-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), pp.
289
312
.
60.
Reich
,
Y.
, and
Shai
,
O.
,
2012
, “
The Interdisciplinary Engineering Knowledge Genome
,”
Res. Eng. Des.
,
23
(
3
), pp.
251
264
.
61.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
62.
Sanaei
,
R.
,
Lu
,
W.
,
Blessing
,
L. T. M.
,
Otto
,
K. N.
, and
Wood
,
K. L.
,
2017
, “
Analogy Retrieval Through Textual Inference
,”
Proceedings of the 2017 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Cleveland, OH
,
Aug. 6–9
, p.
V02AT03A007
.
63.
Gilon
,
K.
,
Chan
,
J.
,
Ng
,
F. Y.
,
Liifshitz-Assaf
,
H.
,
Kittur
,
A.
, and
Shahaf
,
D.
,
2018
, “
Analogy Mining for Specific Design Needs
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
,
Montréal, QC
,
Apr. 21–26
.
64.
Chan
,
J.
,
Chang
,
J. C.
,
Hope
,
T.
,
Shahaf
,
D.
, and
Kittur
,
A.
,
2018
, “
SOLVENT : A Mixed Initiative System for Finding Analogies Between Research Papers
,”
Proceedings of the ACM on Human–Computer Interaction
,
New York, NY
,
Apr. 21–26
, pp.
1
21
.
65.
Al’tshuller
,
G. S.
,
1999
,
The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center Inc.
,
Worcester, MA
.
66.
Cascini
,
G.
, and
Russo
,
D.
,
2007
, “
Computer-Aided Analysis of Patents and Search for TRIZ Contradictions
,”
Int. J. Prod. Dev.
,
4
(
1
), pp.
52
67
.
67.
Vincent
,
J. F. V.
, and
Mann
,
D. L.
,
2002
, “
Systematic Technology Transfer From Biology to Engineering
,”
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
,
360
(
1791
), pp.
159
173
.
68.
Mccaffrey
,
A.
,
2016
, “
Analogy Finder
,” U.S. Patent No. US9501469.
69.
Sarica
,
S.
,
Song
,
B.
,
Low
,
E.
, and
Luo
,
J.
,
2019
, “
Engineering Knowledge Graph for Keyword Discovery in Patent Search
,”
Proceedings of the Design Society: International Conference on Engineering Design (ICED)
,
Delft, The Netherlands
,
Aug. 5–8
, pp.
2249
2258
.
70.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
Artif. Intell. Eng. Des. Anal. Manuf.
, pp.
1
19
.
71.
Chen
,
L.
,
Wang
,
P.
,
Dong
,
H.
,
Shi
,
F.
,
Han
,
J.
,
Guo
,
Y.
,
Childs
,
P. R. N.
,
Xiao
,
J.
, and
Wu
,
C.
,
2019
, “
An Artificial Intelligence Based Data-Driven Approach for Design
,”
J. Vis. Commun. Image Represent.
,
61
, pp.
10
22
.
72.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
.
73.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.
74.
Chakrabarti
,
A.
, and
Shu
,
L. H.
,
2010
, “
Biologically Inspired Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
453
454
.
75.
Nagel
,
J. K. S.
, and
Stone
,
R. B.
,
2012
, “
A Computational Approach to Biologically Inspired Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
26
(
2, SI
), pp.
161
176
.
76.
Fu
,
K.
,
Moreno
,
D.
,
Yang
,
M.
, and
Wood
,
K. L.
,
2014
, “
Bio-Inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-by-Analogy
,”
ASME J. Mech. Des.
,
136
(
11, SI
), p.
111102
.
77.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.
78.
Nagel
,
J. K. S.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,”
Proceedings of the 2010 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Montreal, Quebec
,
Aug. 15–18
, pp.
117
128
.
79.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2010
, “
DANE: Fostering Creativity in and Through Biologically Inspired Design
,”
The Proceedings of 1st International Conference on Design Creativity (ICDC)
,
Kobe, Japan
,
Nov. 29–Dec. 1
, pp.
115
122
.
80.
Helms
,
M.
, and
Goel
,
A. K.
,
2014
, “
The Four-Box Method: Problem Formulation and Analogy Evaluation in Biologically Inspired Design
,”
ASME J. Mech. Des.
,
136
(
11, SI
), p.
111106
.
81.
Cheong
,
H.
, and
Shu
,
L. H.
,
2014
, “
Retrieving Causally Related Functions From Natural-Language Text for Biomimetic Design
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081008
.
82.
Glier
,
M. W.
,
McAdams
,
D. A.
, and
Linsey
,
J. S.
,
2014
, “
Exploring Automated Text Classification to Improve Keyword Corpus Search Results for Bioinspired Design
,”
ASME J. Mech. Des.
,
136
(
11, SI
), p.
111103
.
83.
Deldin
,
J.-M.
, and
Schuknecht
,
M.
,
2014
, “The AskNature Database: Enabling Solutions in Biomimetic Design,”
Biologically Inspired Design
,
A. K.
Goel
,
D. A.
McAdams
, and
R. B.
Stone
, eds.,
Springer
,
New York
, pp.
17
27
.
84.
Verhaegen
,
P.-A.
,
Peeters
,
J.
,
Vandevenne
,
D.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2011
, “
Effectiveness of the PAnDA Ideation Tool
,”
Procedia Eng.
,
9
, pp.
63
76
.
85.
Vandevenne
,
D.
,
Verhaegen
,
P.-A.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2016
, “
SEABIRD: Scalable Search for Systematic Biologically Inspired Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
30
(
1
), pp.
78
95
.
86.
Lucero
,
B.
,
Viswanathan
,
V. K.
,
Linsey
,
J. S.
, and
Turner
,
C. J.
,
2014
, “
Identifying Critical Functions for Use Across Engineering Design Domains
,”
ASME J. Mech. Des.
,
136
(
12
), p.
121101
.
87.
Lucero
,
B.
,
Turner
,
C. J.
, and
Linsey
,
J.
,
2015
, “
Design Repository and Analogy Computation via Unit Language Analysis (DRACULA) Repository Development
,”
Proceedings of the 2015 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Boston, MA
,
Aug. 2–5
, p.
V01AT02A014
.
88.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.
89.
Kruiper
,
R.
,
Vincent
,
J. F. V.
,
Chen-Burger
,
J.
,
Desmulliez
,
M. P. Y.
, and
Konstas
,
I.
,
2020
, “
A Scientific Information Extraction Dataset for Nature Inspired Engineering
,”
Proceedings of the 12th Language Resources and Evaluation Conference
,
Marseille
,
May 13–15
, pp.
2078
2085
.
90.
Bhasin
,
D.
,
McAdams
,
D. A.
, and
Layton
,
A.
,
2021
, “
A Product Architecture-Based Tool for Bioinspired Function-Sharing
,”
ASME J. Mech. Des.
,
143
(
8
), p.
814101
.
91.
Kwon
,
E.
,
Pehlken
,
A.
,
Thoben
,
K.-D.
,
Bazylak
,
A.
, and
Shu
,
L. H.
,
2019
, “
Visual Similarity to Aid Alternative-Use Concept Generation for Retired Wind-Turbine Blades
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031116
.
92.
Zhang
,
Z.
, and
Jin
,
Y.
,
2020
, “
An Unsupervised Deep Learning Model to Discover Visual Similarity Between Sketches for Visual Analogy Support
,”
Proceedings of the 2020 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), Virtual, Online
,
Aug. 17–19
, p.
V008T08A003
.
93.
Miller
,
G. A.
,
Beckwith
,
R.
,
Fellbaum
,
C.
,
Gross
,
D.
, and
Miller
,
K. J.
,
1990
, “
Introduction to WordNet: An On-Line Lexical Database
,”
Int. J. Lexicogr.
,
3
(
4
), pp.
235
244
.
94.
Speer
,
R.
,
Chin
,
J.
, and
Havasi
,
C.
,
2017
, “
Conceptnet 5.5: An Open Multilingual Graph of General Knowledge
,”
Proceedings of the 31st AAAI Conference on Artificial IntelligenceFebruary
,
San Francisco, CA
,
Feb. 4–9
, pp.
4444
4451
.
95.
Goel
,
A. K.
,
Zhang
,
G.
,
Wiltgen
,
B.
,
Zhang
,
Y.
,
Vattam
,
S.
, and
Yen
,
J.
,
2015
, “
On the Benefits of Digital Libraries of Case Studies of Analogical Design: Documentation, Access, Analysis, and Learning
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
2, SI
), pp.
215
227
.
96.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
97.
Kittur
,
A.
,
Yu
,
L.
,
Hope
,
T.
,
Chan
,
J.
,
Lifshitz-Assaf
,
H.
,
Gilon
,
K.
,
Ng
,
F.
,
Kraut
,
R. E.
, and
Shahaf
,
D.
,
2019
, “
Scaling Up Analogical Innovation With Crowds and AI
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
6
), pp.
1870
1877
.
98.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
.
99.
He
,
Y.
,
Camburn
,
B.
,
Liu
,
H.
,
Luo
,
J.
,
Yang
,
M.
, and
Wood
,
K.
,
2019
, “
Mining and Representing the Concept Space of Existing Ideas for Directed Ideation
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121101
.
100.
Song
,
C.
,
Luo
,
J.
,
Hölttä-Otto
,
K.
,
Seering
,
W.
, and
Otto
,
K.
,
2020
, “
Crowdfunding for Design Innovation: Prediction Model With Critical Factors
,”
IEEE Trans. Eng. Manage.
, pp.
1
12
.
101.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
,
Savva
,
M.
,
Song
,
S.
,
Su
,
H.
,
Xiao
,
J.
,
Yi
,
L.
, and
Yu
,
F.
,
2015
, “Shapenet: An Information-Rich 3d Model Repository,” https://arxiv.org/abs/1512.03012
102.
Lim
,
J. J.
,
Pirsiavash
,
H.
, and
Torralba
,
A.
,
2013
, “
Parsing Ikea Objects: Fine Pose Estimation
,”
IEEE International Conference on Computer Vision (ICCV)
,
Sydney, NSW
,
Dec. 1–8
, pp.
2992
2999
.
103.
Koch
,
S.
,
Matveev
,
A.
,
Jiang
,
Z.
,
Williams
,
F.
,
Artemov
,
A.
,
Burnaev
,
E.
,
Alexa
,
M.
,
Zorin
,
D.
, and
Panozzo
,
D.
,
2019
, “
Abc: A Big Cad Model Dataset for Geometric Deep Learning
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
,
June 16–20
, pp.
9601
9611
.
104.
Rossiello
,
G.
,
Gliozzo
,
A.
,
Farrell
,
R.
,
Fauceglia
,
N.
, and
Glass
,
M.
,
2019
, “
Learning Relational Representations by Analogy Using Hierarchical Siamese Networks
,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT
,
Minneapolis, MN
,
June 2–7
, pp.
3235
3245
.
105.
Boden
,
M. A.
,
1998
, “
Artificial Intelligence Creativity and Artificial Intelligence
,”
Artif. Intell.
,
103
(
1–2
), pp.
347
356
.
106.
Goucher-Lambert
,
K.
,
Gyory
,
J. T.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2020
, “
Adaptive Inspirational Design Stimuli: Using Design Output to Computationally Search for Stimuli That Impact Concept Generation
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091401
.
107.
Sadeghi
,
F.
,
Zitnick
,
C. L.
, and
Farhadi
,
A.
,
2015
, “
Deep Visual Analogy-Making
,”
Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS)
,
Montréal, QC
,
Dec. 7–12
, pp.
1882
1890
.
108.
Lu
,
H.
,
Wu
,
Y. N.
, and
Holyoak
,
K. J.
,
2019
, “
Emergence of Analogy From Relation Learning
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
10
), pp.
4176
4181
.
109.
Sadeghi
,
F.
,
Zitnick
,
C. L.
, and
Farhadi
,
A.
,
2015
, “
VISALOGY: Answering Visual Analogy Questions
,”
Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS)
,
Montréal, QC
,
Dec. 7–12
, pp.
1882
1890
.
110.
Liao
,
J.
,
Yao
,
Y.
,
Yuan
,
L.
,
Hua
,
G.
, and
Kang
,
S. B.
,
2017
, “
Visual Attribute Transfer Through Deep Image Analogy
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
15
.
111.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Proceedings of the 27th Conference on Neural Information Processing Systems (NIPS)
,
Montréal, QC
,
Feb. 8–13
, pp.
2672
2680
.
112.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS)
,
Long Beach, CA
,
Dec. 4–9
, pp.
5998
6008
.
113.
Wu
,
Z.
,
Pan
,
S.
,
Chen
,
F.
,
Long
,
G.
,
Zhang
,
C.
, and
Philip
,
S. Y.
,
2020
, “
A Comprehensive Survey on Graph Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
32
(
1
), pp.
4
24
.
114.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)
,
Minneapolis, MN
,
June 2–7
, pp.
4171
4186
.
115.
Brown
,
T. B.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
,
Shyam
,
P.
,
Sastry
,
G.
,
Askell
,
A.
, and
Agarwal
,
S.
,
2020
, “
Language Models Are Few-Shot Learners
,”
The Proceedings of 33th Conference on Neural Information Processing Systems (NeurIPS), Virtual, Online
,
Dec. 7–12
, pp.
1877
1901
.
116.
Ramesh
,
A.
,
Pavlov
,
M.
,
Goh
,
G.
,
Gray
,
S.
,
Voss
,
C.
,
Radford
,
A.
,
Chen
,
M.
, and
Sutskever
,
I.
,
2020
, “Zero-Shot Text-to-Image Generation,” https://arxiv.org/abs/2102.12092
117.
Arrieta
,
A. B.
,
Díaz-Rodríguezb
,
N.
,
Del Ser
,
J.
,
Bennetot
,
A.
,
Tabik
,
S.
,
Barbado
,
A.
,
Garcia
,
S.
,
Gil-López
,
S.
,
Molina
,
D.
,
Benjamins
,
R.
,
Chatila
,
R.
, and
Herrera
,
F.
,
2020
, “
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI
,”
Inf. Fusion
,
58
, pp.
82
115
.
118.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
.
119.
Summers
,
J. D.
,
Eckert
,
C.
, and
Goel
,
A. K.
,
2017
, “
Function in Engineering: Benchmarking Representations and Models
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
4, SI
), pp.
401
412
.
120.
Han
,
J.
,
Sarica
,
S.
,
Shi
,
F.
, and
Luo
,
J.
,
2021
, “
Semantic Networks for Engineering Design : A Survey
,”
Proceedings of the Design Society: International Conference on Engineering Design (ICED)
,
Gothenburg
,
Aug. 16–20
.
121.
Camburn
,
B.
,
He
,
Y.
,
Raviselvam
,
S.
,
Luo
,
J.
, and
Wood
,
K.
,
2020
, “
Machine Learning-Based Design Concept Evaluation
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031113
.
122.
Zaveri
,
A.
,
Rula
,
A.
,
Maurino
,
A.
,
Pietrobon
,
R.
,
Lehmann
,
J.
, and
Auer
,
S.
,
2016
, “
Quality Assessment for Linked Data: A Survey
,”
Semant. Web
,
7
(
1
), pp.
63
93
.
123.
Paulheim
,
H.
,
2017
, “
Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods
,”
Semant. Web
,
8
(
3
), pp.
489
508
.
124.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PaDGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
125.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111403
.
126.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
127.
Nobari
,
A. H.
,
Rashad
,
M. F.
, and
Ahmed
,
F.
,
2021
, “
Creativegan: Editing Generative Adversarial Networks for Creative Design Synthesis
,”
Proceedings of the 2021 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Virtual, Online
,
Aug. 17–20
.
128.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design Via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
129.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
130.
Gan
,
Y.
,
Ji
,
Y.
,
Jiang
,
S.
,
Liu
,
X.
,
Feng
,
Z.
,
Li
,
Y.
, and
Liu
,
Y.
,
2021
, “
Integrating Aesthetic and Emotional Preferences in Social Robot Design: An Affective Design Approach With Kansei Engineering and Deep Convolutional Generative Adversarial Network
,”
Int. J. Ind. Ergon.
,
83
, p.
103128
.
131.
Rezende
,
D. J.
,
Mohamed
,
S.
, and
Wierstra
,
D.
,
2014
, “
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
,”
Proceedings of the 31st International Conference on Machine Learning (ICML)
,
Beijing
,
June 21–26
, pp.
1278
1286
.
132.
Chiarello
,
F.
,
Belingheri
,
P.
, and
Fantoni
,
G.
,
2021
, “
Data Science for Engineering Design: State of the Art and Future Directions
,”
Comput. Ind.
,
129
, p.
103447
.
133.
Yilmaz
,
S.
,
Seifert
,
C.
,
Daly
,
S. R.
, and
Gonzalez
,
R.
,
2016
, “
Design Heuristics in Innovative Products
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071102
.
134.
Jin
,
X.
,
Evans
,
M.
,
Dong
,
H.
, and
Yao
,
A.
,
2021
, “
Design Heuristics for Artificial Intelligence: Inspirational Design Stimuli for Supporting UX Designers in Generating AI-Powered Ideas
,”
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
,
Yokohama
,
May 8–13
, pp.
1
8
.
135.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
.
136.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
137.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
138.
Simpson
,
T. W.
,
Jiao
,
J.
,
Siddique
,
Z.
, and
Hölttä-Otto
,
K.
,
2014
,
Advances in Product Family and Product Platform Design
,
Springer
,
New York
.
139.
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Data-Driven Platform Design: Patent Data and Function Network Analysis
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021101
.
140.
Merrill
,
M. D.
,
2002
, “
First Principles of Instruction
,”
Educ. Technol. Res. Dev.
,
50
(
3
), pp.
43
59
.
141.
Cagan
,
J.
, and
Agogino
,
A. M.
,
1991
, “
Dimensional Variable Expansion—A Formal Approach to Innovative Design
,”
Res. Eng. Des.
,
3
(
2
), pp.
75
85
.
142.
Kannengiesser
,
U.
, and
Gero
,
J. S.
,
2018
, “
Ekphrasis as a Basis for a Framework for Creative Design Processes
,”
International Conference on Design Computing and Cognition (DCC’18)
,
Politecnico di Milano
,
July 2–4
, pp.
265
283
.
143.
Hatchuel
,
A.
,
Le Masson
,
P.
,
Reich
,
Y.
, and
Subrahmanian
,
E.
,
2018
, “
Design Theory: A Foundation of a New Paradigm for Design Science and Engineering
,”
Res. Eng. Des.
,
29
(
1
), pp.
5
21
.
144.
Nagai
,
Y.
,
Taura
,
T.
, and
Mukai
,
F.
,
2009
, “
Concept Blending and Dissimilarity: Factors for Creative Concept Generation Process
,”
Des. Stud.
,
30
(
6
), pp.
648
675
.
145.
He
,
Y.
,
2019
, “
Combinational Creativity : Theories, Methods and Tools
,”
Ph.D. thesis
,
Singapore University of Technology and Design
,
Singapore
.
You do not currently have access to this content.