
Daniel Hård1
Division of Solid Mechanics,

Lund University,
Ole Römers Väg 1,

Lund, Sweden
email: daniel.hard@solid.lth.se

Mathias Wallin
Division of Solid Mechanics,

Lund University,
Ole Römers Väg 1,

Lund, Sweden
email: mathias.wallin@solid.lth.se

Matti Ristinmaa
Division of Solid Mechanics,

Lund University,
Ole Römers Väg 1,

Lund, Sweden
email: matti.ristinmaa@solid.lth.se

Connectivity constraints
ensuring continuous electrodes
in topology optimization of EAP
Electroactive polymers (EAP) deforms when subject to an electric field, which is gener-
ated by two or more electrodes. To ensure proper function of the EAP, these electrodes
are connected to a source and they are therefore required to be continuous such that no
isolated islands exist. Increasing an EAPs performance using topology optimization while
ensuring electrode connectivity is the goal of this work. A topology optimization formula-
tion is introduced where electrode connectivity is ensured using the Virtual Temperature
Method. Numerical experiments demonstrates that this is an efficient method to guarantee
connectivity.

Keywords: Topology optimization, Electroactive polymers, Connectivity constraints, Vir-
tual Temperature Method

1 Introduction
Electroactive polymers (EAP) is a class of materials that, when

electrically stimulated, react with mechanical deformation. Mod-
elling and design of EAP is an active research area and it has
great potential for a number of applications, e.g. artificial mus-
cles and soft robotics [1]. A typical EAP is a dielectric actuator
constructed by placing a thin layer of EAP material between two
compliant electrodes. When a potential difference is applied to the
electrodes, the EAP material will contract in the direction of the
electric field and elongate in the in-plane directions.

The deformation in a dielectric polymer plate with electrodes
on both sides is mainly due to two physical effects. For large po-
tential differences, the two electrodes will attract each other due
to Coulomb forces and thus contract the plate. This is known as
the Maxwell effect. Too high electric fields may cause dielectric
breakdown, which results in that the dielectric material looses its
insulating properties and becomes conducting. Another effect that
is prevalent at moderate electric fields is called (inherent) elec-
trostriction. Dielectric polymers has a quadratic relationship be-
tween the deformation and the electric field. Reversing the electric
field will thus yield the same deformation. This is in contrast to
piezoelectric materials, which instead have a linear relationship
where the deformation depends on the sign of the electric field [1].

Topology optimization (TO) of multi-physics phenomena has
been performed for several different types of couplings, such as
thermo-mechanical in, e.g., Granlund et al. [2] and Zhu et al. [3],
or thermo-electric in, e.g., Xu et al. [4] and Xing at al. [5]. TO has
also been applied to electro-mechanical coupling, like piezoelec-
tric materials in, e.g., Lee and Tovar [6]. However, the research on
EAPs is scarce. Ortigosa et al. [7] used TO to optimize the active
EAP layer. Based on this model, Ortigosa and Martínez-Frutos [8]
developed a multi-resolution model where multiple density values
were used in each element. In Martínez-Frutos et al. [9] the elec-
trode placement was optimized, however not considering electrode
connectivity. As a result, some of the optimal electrode layouts
were discontinuous. Recently, Ortigosa et al. [10] combined a
multi-material approach for the active layer and shape-morphing
TO. For the specific case of dielectric elastomers Bortot et al. [11]
used TO to design tunable band gaps using an Genetic Algorithm.
Recently, this problem was solved using gradient-based optimiza-
tion, see Sharma et al. [12]. In all of the mentioned cases, the
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influence of the electric field in the surrounding free space was not
accounted for. This was very recently investigated in Dev et al.
[13].

In certain TO applications, it is crucial to make structures contin-
uous. The Virtual Temperature Method (VTM) by Liu et al. [14],
addresses this in the context of additive manufacturing, where a
continuous void region is necessary to be able to remove excess
support or unused powder material. The method is also denoted
the Virtual Scalar Field method, see Li et al. [15]. The method
is based on solving an auxiliary, fictitious thermal problem, where
regions with low density have high conductivity and high heat sup-
ply, whereas regions with high density have low conductivity and
low heat supply. Homogeneous Dirichlet condition is enforced on
part of the boundary while the rest is subjected to a homogeneous
Neumann condition. Consequently, low density regions in con-
nection with the boundary with the Dirichlet boundary condition
will have low temperatures while regions not connected will have
a high temperature. By limiting the maximum fictitious temper-
ature, connectivity can be promoted. A modified version of the
VTM was used in this work, where the behaviour of the solid and
void regions has been swapped. A similar approach was used in,
e.g., Swartz et al. [16].

Manufacturing constraints in periodic structures was enforced
by VTM in Swartz et al. [16] and electrode connectivity for piezo
modal transducers was ensured in Donoso and Guest [17]. Luo
et al. [18,19] extended VTM to also incorporate a nonlinear heat
source term which results in uniform temperature in enclosed voids,
regardless of void sizes and locations.

An alternative to VTM is to use spectral graph theory on the
discretized density distribution, which Donoso et al. [20,21] used
to ensure electrode connectivity in piezo transducers. Recently,
the same authors also developed a similar method for a continuous
density distribution in Donoso et al. [22].

In EAP structures, electrodes must be connected to a source and
it is therefore necessary to ensure that the electrodes are continuous.
Combining EAP and TO that ensures electrode connectivity is the
main goal of the present work. The shape of the electrodes follows
the shape of the active layer. Optimizing the shape of the active
layer will therefore implicitly dictate the shape of the electrodes.

The structure of this paper is as follows. In Section 2 the EAP
model is described. In Section 3, the TO formulation is developed.
Of special interest to this work is Section 3.3, which describes a
modified version of the previously mentioned VTM. Results from
developed methods are shown in Section 4. Lastly, Section 5
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provides conclusions.

2 Continuum model for electroactive polymers
The basic relations that govern electro-mechanically coupled

problems will be introduced, and restricted to the electrostatic
case. For a more detailed background information the reader is
referred to Jackson [23], Eringen and Maugin [24], Kovetz [25],
and Dorfmann and Ogden [26].

The considered body is a collection of material particles labeled
by their coordinates 𝑿 in the material configuration, Ω0. The
motion of the body is described by the smooth mapping 𝝋(𝑿, 𝑡)
of points 𝑿 in Ω0 to their position 𝒙 = 𝝋(𝑿, 𝑡) in the current
domain Ω𝑡 . The deformation gradient 𝑭 = ∇𝑿𝝋 locally describes
the deformation and 𝐽 = det(𝑭).

The hyper-elastic material response will be governed by the right
Cauchy-Green tensor which is defined as

𝑪 = 𝑭𝑇 · 𝑭. (1)

2.1 Balance relations. In the electro-quasistatic case, the
boundary 𝜕Ω0, with the outward unit normal 𝑵 to Ω0, is split
such that 𝜕Ω0 = 𝜕Ω

ℎ,𝜙

0 ∪ 𝜕Ω𝑔,𝜙

0 and 𝜕Ωℎ,𝜙

0 ∩ 𝜕Ω𝑔,𝜙

0 = ∅. The
Maxwell-Faraday equation for quasi-electrostatics reads

∇𝑿 × 𝑬 = 0, (2)

which implies that the electric field 𝑬 is conservative and conse-
quently is obtained from the gradient of a scalar electric potential
𝜙

𝑬 = −∇𝑿𝜙, in Ω0, (3)

𝜙 = 𝜙𝑔, on 𝜕Ω𝑔,𝜙

0 , (4)

where the boundary condition in Eq. (4) represents the prescribed
electric potential on the boundary part 𝜕Ω𝑔,𝜙

0 to Ω0.
In absence of free volume charge density in the dielectric mate-

rial, Gauss’s law in terms of the electric displacement 𝑫 is formu-
lated as

∇𝑿 · 𝑫 = 0, in Ω0, (5)

−𝑫 · 𝑵 = 𝐷𝑁 , on 𝜕Ωℎ,𝜙

0 , (6)

where the boundary condition in Eq. (6) represents the prescribed
electric charge on the boundary part 𝜕Ωℎ,𝜙

0 .
The boundary for the balance of linear momentum for quasi-

static electro-mechanics is similarly split such that 𝜕Ω0 = 𝜕Ω
ℎ,𝝋
0 ∪

𝜕Ω
𝑔,𝝋
0 and 𝜕Ωℎ,𝝋

0 ∩ 𝜕Ω𝑔,𝝋
0 = ∅. This yields,

∇𝑿 · 𝑻 + 𝜌0 𝒇 = 0, in Ω0, (7)

𝑻 · 𝑵 = 𝑻𝑁 , on 𝜕Ωℎ,𝝋
0 , (8)

𝝋 = 𝝋𝑔, on 𝜕Ω𝑔,𝝋
0 , (9)

where 𝒇 is the mechanical body load per unit volume and 𝑻 the
total first Piola-type stress tensor. The boundary condition in Eq.
(8) represents the prescribed traction on 𝜕Ω

ℎ,𝝋
0 and Eq. (9) the

prescribed displacement on 𝜕Ω𝑔,𝝋
0 .

2.2 Constitutive model. The dielectric EAP model used in
this work is described in detail in Ask et al. [27–29] where also
viscoelasticity is included. As demonstrated in Dorfmann and Og-
den [26], an augmented, free energy function Ω(𝑭, 𝑬) can be
introduced such that

Ω = Ωm +Ωmel +Ωel, (10)

where the augmented free energy function is assumed to be sep-
arated into a purely mechanical Ωm, an electro-mechanical Ωmel,
and a purely electric Ωel part. The purely mechanical response is
modelled by neo-Hookean hyper-elasticity,

Ωm =
1
2
𝐾 (𝐽 − 1)2 + 1

2
𝐺

(︂
𝑪 : 𝑰 − 3

)︂
, (11)

where 𝐾 and 𝐺 are the bulk and shear modulus, respectively, and
𝑪 = 𝐽−2/3𝑪. The electro-mechanical coupling part Ωmel is taken
as

Ωmel = −
1
2
𝜀0𝜀𝑟 𝐽𝑬 · 𝑪−1 · 𝑬, (12)

where 𝜀0 ≈ 8.854 · 10−12 F m−1 denotes the vacuum permittivity
and 𝜀𝑟 the constant relative permittivity. The purely electric part
Ωel is taken as

Ωel = 𝑐𝑒𝑬 · 𝑬. (13)

From Eq. (10), the total Piola stress tensor 𝑻 and material electric
displacements 𝑫 can be obtained as

𝑫 = − 𝜕Ω
𝜕𝑬

= 𝜀0𝜀𝑟 𝐽𝑬 · 𝑪−1 − 2𝑐𝑒𝑬, (14)

and

𝑻 =
𝜕Ω

𝜕𝑭

= 𝐾 (𝐽 − 1)𝐽𝑭−𝑇 + 𝐺𝐽−2/3
[︃
𝑭 − 1

3
[𝑪 : 𝑰]𝑭−𝑇

]︃
+ 𝜀0𝜀𝑟 𝐽

[︃(︂
𝑬 · 𝑭−1

)︂
⊗
(︂
𝑬 · 𝑪−1

)︂
− 1

2
(𝑬 · 𝑪−1 · 𝑬)𝑭−𝑇

]︃
.

(15)

2.3 Variational forms and finite element discretization.
The variational form of the electro-quasistatic problem in Eq. (5)
in the material configuration Ω0 is

𝛿𝑊elt = 𝛿𝑊elt
ext − 𝛿𝑊elt

int = 0, (16)

for all 𝛿𝜙 that vanishes on 𝜕Ω𝑔,𝜙

0 . In Eq. (16),

𝛿𝑊elt
ext = −

∫
𝜕Ω

ℎ,𝜙

0

𝛿𝜙𝐷𝑁d𝐴, (17)

𝛿𝑊elt
int =

∫
Ω0
∇𝑿 𝛿𝜙 · 𝑫d𝑉. (18)

Starting from the electro-mechanical balance of linear momen-
tum in Eq. (7) and assuming no mechanical body forces, the
variational form in the material configuration Ω0 is

𝛿𝑊mec = 𝛿𝑊mec
ext − 𝛿𝑊mec

int = 0, (19)

for all 𝛿𝝋 that vanishes on 𝜕Ω𝑔,𝝋
0 . In Eq. (19),

𝛿𝑊mec
ext =

∫
𝜕Ω

ℎ,𝝋
0

𝛿𝝋 · 𝑻𝑁d𝐴, (20)
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𝛿𝑊mec
int =

∫
Ω0
∇𝑿 𝛿𝝋 : 𝑻d𝑉. (21)

The variational forms are discretized using a standard nonlinear
finite element formulation.

The electric potential only requires one additional degree of
freedom in addition to the displacement degrees of freedom. The
same shape functions are used to interpolate the displacements 𝝋
and potential 𝜙,

𝝋 ≈ 𝝋ℎ = 𝑵𝝋𝒂𝝋 , 𝜙 ≈ 𝜙ℎ = 𝑵𝜙𝒂𝜙 , (22)

where 𝑵𝝋 and 𝑵𝜙 are the global shape functions, 𝒂𝝋 and 𝒂𝜙 are
corresponding nodal values. Based on the Galerkin approach, the
virtual displacements and electric potential are approximated as

𝛿𝝋 ≈ 𝑵𝝋𝛿𝒂𝝋 , 𝛿𝜙 ≈ 𝑵𝜙𝛿𝒂𝜙 , (23)

where 𝛿𝒂𝝋 and 𝛿𝒂𝜙 are the virtual element nodal values.
Inserting the finite element approximations in Eqs. (22) and

(23) into Eqs. (16) and (19) and making use of the arbitrariness of
𝛿𝒂𝝋 and 𝛿𝒂𝜙 render the residual equations in matrix format

𝒓𝜙 =

∫
𝜕Ω

ℎ,𝜙

0

𝑵𝜙,𝑇𝐷𝑁d𝐴 −
∫
Ω0

𝑩𝜙,𝑇𝑫d𝑉 = 0,

𝒓𝝋 =

∫
𝜕Ω

ℎ,𝝋
0

𝑵𝝋,𝑇𝑻𝑁d𝐴 −
∫
Ω0

𝑩𝝋,𝑇𝑻d𝑉 = 0,

(24)

where 𝑩𝝋 and 𝑩𝜙 holds derivatives of the global shape functions
for displacements and potential.

To find a solution to the residuals 𝒓𝜙 = 0 and 𝒓𝝋 = 0, the Newton
method is adopted which is based on linearizations of Eqs. (16)
and (19),

0 = 𝛿𝑊elt + d𝛿𝑊elt,

0 = 𝛿𝑊mec + d𝛿𝑊mec.
(25)

Assuming dead loading condition, the linearizations are found as

−d𝛿𝑊elt = d𝛿𝑊elt
int =

∫
Ω0
∇𝑿 𝛿𝜙 · Delt · ∇𝑿d𝜙d𝑉

−
∫
Ω0
∇𝑿 𝛿𝜙 · Dmix : ∇𝑿d𝝋d𝑉,

−d𝛿𝑊mec = d𝛿𝑊mec
int = −

∫
Ω0
∇𝑿 𝛿𝝋 : Dmix,T · ∇𝑿d𝜙d𝑉

+
∫
Ω0
∇𝑿 𝛿𝝋 : Dmec : ∇𝑿d𝝋d𝑉,

(26)

where the tangents are defined as

Delt =
𝜕2Ω

𝜕𝑬 ⊗ 𝜕𝑬 , Dmix =
𝜕2Ω

𝜕𝑬 ⊗ 𝜕𝑭 ,

Dmix,T =
𝜕2Ω

𝜕𝑭 ⊗ 𝜕𝑬 , Dmec =
𝜕2Ω

𝜕𝑭 ⊗ 𝜕𝑭 .

(27)

Note that Delt is second order, Dmix third order, and Dmec fourth
order tensors.

The finite element discretization of Eqs. (25) and (26) pro-
vides the linearised system of equations can now be summarised
in matrix format as

𝑲𝑘Δ𝒂𝑘 = 𝒓𝑘 ,

[︃
𝑲𝝋𝝋 𝑲𝝋𝜙

𝑲𝜙𝝋 𝑲𝜙𝜙

]︃ [︃
Δ𝒂𝝋

Δ𝒂𝜙

]︃
=

[︃
𝒓𝝋

𝒓𝜙

]︃
, (28)

which provides the Newton update

𝒂𝑘+1 ← 𝒂𝑘 + Δ𝒂𝑘 , (29)

that continues until the residual 𝒓𝑘 is sufficiently small.
The stiffness matrices in matrix format are provided by

𝑲𝜙𝜙 =

∫
Ω0

𝑩𝜙,𝑇𝑫elt𝑩𝜙d𝑉,

𝑲𝝋𝜙𝑇

= 𝑲𝜙𝝋 = −
∫
Ω0

𝑩𝜙,𝑇𝑫mix𝑩𝝋d𝑉,

𝑲𝝋𝝋 =

∫
Ω0

𝑩𝝋,𝑇𝑫mec𝑩𝝋d𝑉,

(30)

where 𝑫mec, 𝑫mix and 𝑫elt are the Voigt representation of the
material tangents in Eq. (27).

3 Topology optimization formulation
A piecewise uniform density field 𝜌 is introduced in the design

domain Ω𝐷𝐷 , which is a subset of the undeformed domain Ω0.
Each discretized finite element 𝑒 in Ω𝐷𝐷 is associated with a
uniform element density 𝜌𝑒 ∈ [0, 1]. The element densities are
considered to be the design variables for the optimization and are
collected in the vector 𝝆.

3.1 Filter, projection, and material interpolation. The op-
timization design field is regularized by smoothing the piecewise
uniform densities 𝜌 such that a continuous �̃� is obtained. The
smoothing is performed using the PDE filter by Lazarov and Sig-
mund [30]: {︃

−𝑙20Δ𝑿 �̃� + �̃� = 𝜌, in Ω𝐷𝐷 ,

∇𝑿 �̃� · 𝑵 = 0, on 𝜕Ω𝐷𝐷 ,
(31)

where the filter length scale parameter 𝑙0 controls the level of
smoothing.

The PDE filter in Eq. (31) is discretised using the same finite
element discretisation as in the state problem, which render

𝑲𝑓 �̃� = 𝑻𝑓 𝝆, (32)

where 𝑲𝑓 and 𝑻𝑓 can be calculated a priori.
To reduce the amount of gray elements, the smooth Heaviside

projection introduced by Wang et al. [31],

�̄� = 𝐻 ( �̃�) = tanh(𝛽𝜂) + tanh(𝛽( �̃� − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂)) , (33)

is used. In Eq. (33), 𝛽 and 𝜂 control the sharpness and the
projection threshold, respectively. The projection in Eq. (33) was
applied on the filtered density field �̃� in every Gauss point.

Solid isotropic material with penalisation (SIMP), see Bendsøe
and Sigmund [32], is used to interpolate the terms in Eq. (10) as

ΩSIMP =
(︁
𝛿𝑚 + (1 − 𝛿𝑚) �̄�𝑝𝑚

)︁
Ωm

+
(︁
𝛿𝑚𝑒𝑙 + (1 − 𝛿𝑚𝑒𝑙) �̄�𝑝𝑚𝑒𝑙

)︁
Ωmel

+
(︁
𝛿𝑒𝑙 + (1 − 𝛿𝑒𝑙) �̄�𝑝𝑒𝑙

)︁
Ωel,

(34)

where 𝛿𝑚, 𝛿𝑚𝑒𝑙 , and 𝛿𝑒𝑙 are small positive factors that prevents
the system matrices from being singular and 𝑝𝑚, 𝑝𝑚𝑒𝑙 , and 𝑝𝑒𝑙
are the penalisation exponents.
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3.2 Optimization formulation. The considered optimization
problem is formulated as

(TO)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
𝝆
𝑔0

s.t
{︃
𝑔𝑖 ≤ 0, 𝑖 = 1, ..., 𝑛𝑐𝑜𝑛𝑠𝑡𝑟
0 ≤ 𝜌𝑒 ≤ 1, ∀𝑒 ∈ [1, ..., 𝑛𝑒𝑙𝑚]

(35)

where the objective function in all examples is

𝑔0 = 𝒍𝑇 𝒂, (36)

where 𝒍 is a constant vector with nonzero entries in the dofs which
should be optimized, 𝒂 is the solution vector at the terminal load
step, and 𝜌𝑒 is the element density in element 𝑒.

To limit the volume 𝑉 of the solid region, a volume constraint
is enforced,

𝑔1 =
𝑉

𝛼𝑉𝐷𝐷
− 1 ≤ 0, (37)

where 𝑉𝐷𝐷 is the volume of the design domain Ω𝐷𝐷 , 𝛼 the al-
lowed volume fraction, and where

𝑉 =

∫
Ω𝐷𝐷

�̄�(𝜌) d𝑉. (38)

Remaining constraint functions are described in Section 3.3.

3.3 Connectivity constraints. For proper functionality, the
electrodes must be connected. To ensure this connectivity, the
electrodes should be continuous. If not, i.e., when islands are
formed, the connectivity condition requires extra threading which
is unfavourable from a manufacturing point of view. To illustrate
this, consider the two structures in Fig. 1, where the left consists
of two disconnected islands whereas the right structure is con-
nected. As creation of islands should be prevented, a connectivity
constraint is required.

The Virtual Temperature Method (VTM) [14], also known as
Virtual Scalar Field method [15] is here used to enforce connec-
tion of solid material between the electrodes. In this method, an
auxiliary fictitious thermal problem is solved in the electrodes.
Solid regions are assigned high heat supply and high conductivity
whereas void regions have low heat supply and low conductiv-
ity. Homogeneous Dirichlet boundary condition is enforced on the
part of the boundary where the electrode is externally connected,
𝜕Ω

𝑔

𝑒𝑙𝑖𝑇
. The rest of the boundary, 𝜕Ωℎ

𝑒𝑙𝑖𝑇
, is subject to homo-

geneous Neumann conditions. Solving this auxiliary problem for
the Fig. 1(a) configuration will result in a low temperature for the
region connected to the Dirichlet part of the boundary due to high
heat transport out of the domain. The right solid region in Fig.
1(a) is isolated and heat can not leave and will therefore have a
high temperature.

In the Fig. 1(b) configuration the two regions are connected
which enables conduction from right to left and as a result the
temperature will be lower. By limiting the maximum temperature,
connectivity can thus be ensured.

The virtual thermal conduction problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇𝑿 · (𝑘 ( �̄�)∇𝑿𝑇 (𝑿)) +𝑄( �̄�) = 0 for 𝑿 ∈ Ω𝑒𝑙𝑖𝑇 ,

𝑇 (𝑿) = 0 for 𝑿 ∈ 𝜕Ω𝑔

𝑒𝑙𝑖𝑇
,

∇𝑿𝑇 (𝑿) · 𝑵 = 0 for 𝑿 ∈ 𝜕Ωℎ
𝑒𝑙𝑖𝑇

,

(39)

is solved as a 2D problem in the undeformed configuration in
each electrode Ω𝑒𝑙𝑖𝑇 and will give the temperature distribution
𝑇 (𝑿). Connectivity is now enforced by constraining the maximum
allowed temperature as

𝑔2 = 𝑇𝑝 − 𝜆𝑇𝑟𝑒 𝑓 ≤ 0, (40)

∂Ωh
eliT

∇XT ·N = 0Source
∂Ωg

eliT

T = 0

T low
T low

(a)

∂Ωh
eliT

∇XT ·N = 0Source
∂Ωg

eliT

T = 0

ρ = 1

ρ = 0

T low
T high

(b)

Fig. 1 Illustrative example of the VTM where red arrows in-
dicate heat flow. Left figure shows two disconnected solid
regions. One that is connected to the Dirichlet part of the
boundary and will therefore have a lower temperature and
one isolated which therefore will have a high temperature. In
the right figure the two regions are connected to each other
as well as to the Dirichlet part of the boundary. Consequently
the whole solid region will have a low temperature.

where 𝜆 is a dimensionless factor, the maximum temperature 𝑇𝑝
in the solid domain is approximated using the smooth p-norm of
the temperatures, i.e.

𝑇𝑝 =

(︃∫
Ω𝑒𝑙𝑖𝑇

( �̄�𝑇)𝑝d𝐴
)︃1/𝑝

. (41)

The scaling factor �̄� in Eq. (41) removes high virtual temperatures
in void regions. 𝑇𝑟𝑒 𝑓 is a reference peak temperature calculated
with Eq. (41) when 𝜌 = 1 in the whole electrode.

The SIMP formulation [32] is used to interpolate both the ther-
mal conductivity coefficient 𝑘 and the heat supply 𝑄 in Eq. (39)
as

𝑘 ( �̄�) = (𝜖 + �̄�𝑝𝑘 (1 − 𝜖))𝑘0, 𝑄( �̄�) = �̄�𝑝𝑄𝑄0, (42)

where 𝑘0 = 1 W m−1K−1 and 𝑄0 = 1 W m−3 are arbitrary since
they are formulated in relation to a reference temperature. The
value of 𝜖 should be small but sufficiently large to ensure that the
stiffness matrix does not become singular. In this work 𝜖 = 10−5

was used.
The virtual temperature problem is solved using conventional

FEM, i.e.
𝑲𝑐 ( �̄�)𝒂𝑐 = 𝒇𝑐 ( �̄�). (43)

3.4 Sensitivity analysis. The design updates are obtained us-
ing the gradient based MMA, see Svanberg [33], which uses gra-
dients of the objective and constraint functions with respect to the
design variables 𝝆. Because a PDE filter is used, the chain rule is
applied to the objective and constraint functions such that

𝜕𝑔𝑖

𝜕𝝆
=
𝜕𝑔𝑖

𝜕 �̃�

𝜕 �̃�

𝜕𝝆
, (44)

where
𝜕 �̃�

𝜕𝝆
is obtained from the filter in Eq. (31).

The sensitivities of the volume constraint 𝑔1 = 𝑉
𝛼𝑉𝐷𝐷

− 1 with
respect to the filtered design variables are calculated using

𝜕𝑉

𝜕 �̃�
=

∫
Ω𝐷𝐷

𝜕�̄�

𝜕 �̃�
d𝑉 =

∫
Ω𝐷𝐷

𝜕�̄�

𝜕�̃�

𝜕 �̃�

𝜕 �̃�
d𝑉 =

∫
Ω𝐷𝐷

𝐻′𝑵𝑇 d𝑉,

(45)
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Table 1 Material properties for the EAP material

𝐾 [MPa] 𝐺 [MPa] 𝑐𝑒 [NV−2] 𝜀𝑟 [−]
0.6 0.1 1 4.7

Table 2 Penalisation exponents
𝑝𝑚 𝑝𝑚𝑒𝑙 𝑝𝑒𝑙
3 6 3

where Eq. (33) was used.
The sensitivity of the objective function 𝑔0 (𝒂) = 𝒍𝑇 𝒂 is cal-

culated with the adjoint method wherein the objective function
is augmented with 𝝀𝑇 𝒓 (𝒂, �̃�) = 0, where 𝝀 is the adjoint and
𝒓𝑇 =

[︁
𝒓𝝋,𝑇 𝒓𝜙,𝑇

]︁
the residual. The sensitivities w.r.t. the filtered

densities �̃� is now computed as

𝜕�̃�0 (𝒂, �̃�)
𝜕 �̃�

=
𝜕�̃�0
𝜕 �̃�
+ 𝜕�̃�0
𝜕𝒂

𝜕𝒂

𝜕 �̃�
= −𝝀𝑇 𝜕𝒓

𝜕 �̃�
+
(︂
𝒍𝑇 − 𝝀𝑇𝑲

)︂ 𝜕𝒂
𝜕 �̃�

. (46)

To annihilate the implicit sensitivity 𝜕𝒂
𝜕�̃� , 𝝀 is assigned to fulfil

𝑲𝝀 = 𝒍, (47)

where 𝑲 is the stiffness matrix in the last load step. Note that a
homogeneous Dirichlet boundary condition is enforced in the dofs
where displacements or potential is prescribed.

Once Eq. (47) is solved, the sensitivity can be computed as

𝜕�̃�0 (𝒂, �̃�)
𝜕 �̃�

= −𝝀𝑇 𝜕𝒓
𝜕 �̃�

. (48)

To compute the sensitivity of the connectivity constraint 𝑔2 in
Eq. (40), the adjoint approach is used again but now replacing 𝝀𝑇 𝒓
with 𝝀𝑇𝑐 𝒓𝑐 where 𝒓𝑐 = 𝑲𝑐𝒂𝑐 − 𝒇 . Using identical approach as in
Eqs. (46)-(48) results in

𝜕�̃�2
𝜕 �̃�

=
𝜕𝑔2
𝜕 �̃�
− 𝝀𝑇𝑐

𝜕𝒓𝑐
𝜕 �̃�

, (49)

where

𝑲𝑐𝝀𝑐 =

(︃
𝜕𝑔2
𝜕𝒂𝑐

)︃𝑇
. (50)

Note that the sensitivities of the connectivity constraint will only
be nonzero for the nodes corresponding to the electrode.

4 Numerical examples
The material properties for the solid EAP material are given in

Tab. 1 and the void region are modelled like solid properties scaled
by a factor of 10−9 to reduce the influence of the void region, while
avoiding a singular stiffness matrix.

Inspired by Ortigosa et al. [7], the electro-mechanical coupling
term is penalised more than the purely electrical and mechanical
terms to ensure low electro-mechanical coupling in the void and
intermediate regions. The penalisation exponents used herein are
given in Tab. 2.

Fig. 2 shows a quarter of a cylinder consisting of two layers.
The outer part is the active layer and the inner part the passive host
layer. The active layer is considered as the design domain while
the host layer is fixed with only solid material. The electrodes
are situated on both sides of the active layer, between which the
potential difference Δ𝜙 is applied. The sources for the electrodes
are situated along the bottom edges. It is also assumed that 𝐷𝑁 =

0. Symmetry is enforced on the 𝑥 = 0 and 𝑧 = 0 planes. The
objective is to maximize the distance in 𝑦-direction between the
top and bottom edges. Multiple cylinders with different lengths
𝑙𝑧 were used and the other geometrical parameters can be seen in

x

y

z

uout

uout

r
θ

t1
t2

lz

∆φ

Connection to source

Active layer
Design domain

Host layer

(a) Geometry of the cylinder.

θ · r

z T = 0

∇XT ·N = 0

(b) Boundary conditions used for the VTM problem in both
electrodes, but with different radius r .

Fig. 2 a) Illustration of the cylinder, which is discretized us-
ing 3D solid elements. Symmetry w.r.t. x = 0 and z = 0
is assumed. To prevent rigid body motion, the structure is
properly constrained. b) The solution domain for the virtual
temperature problem. The colours indicate the location of
the boundary conditions.

Table 3 Geometrical parameters for cylinder shell in Fig. 2.
Case 1 2 3
𝑟 [mm] 40 40 40
𝑙𝑧 [mm] 40 80 120
𝑡1 [mm] 1 1 1
𝑡2 [mm] 1 1 1
Δ𝜙 [kV] 15 15 15
Elements 4x40x132 4x80x132 4x120x132
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Tab. 3. In all cases a volume fraction 𝛼 = 40% is used. All finite
element models are based on 3D solid elements.

The objective is to maximize the separation between the top and
bottom edges, as indicated in Fig. 2 by 𝑢𝑜𝑢𝑡 and the thick lines
and arrows. The vector 𝒍 is defined such that only displacements
in the 𝑦-direction on the top and bottom edges are non-zero,

𝒍 =

⎧⎪⎪⎨⎪⎪⎩
− 1
𝑛 y-dofs on top edge

1
𝑛 y-dofs on bottom edge
0 else

(51)

where 𝑛 is the total number of nodes on the both edges and the
sign accounts for in which direction the displacement should be
minimized.

The filter and projection parameters were chosen based on nu-
merical experiments and determined to be appropriate. As an
example, a too low value on the filter parameter 𝑙0 could cause
issues by creating too thin connections. Therefore, it was set to be
approximately 4 element sizes. The thresholding parameter 𝛽 was
initiated to 𝛽 = 1 and then increased by 1 every 20th iteration to a
maximum of 15. The parameter 𝜂 = 0.5 was fixed.

Standard parameters for the MMA were used, except for the
first 300 iterations where instead GHINIT = 0.1, GHDECR = 0.9,
and GHINCR = 1.1 were used. The objective function 𝑔0 was
scaled by a factor 103 and the constraint function 𝑔1 by 10. After
the continuation ends, convergence was checked and the design

updates continues until 𝑔𝑘
0 −𝑔

𝑘−1
0

𝑔𝑘
0

< 10−5, and until all constraints
were fulfilled.

Algorithm 1 presents in pseudo-code the main steps for imple-
menting the presented methodology.

Algorithm 1 Optimization algorithm without connectivity
Set initial values on all parameters
Set 𝝆 for the initial design
while 𝑔𝑘0 − 𝑔

𝑘−1
0 > 10−5𝑔𝑘0 and continuation terminated do

If applicable update parameters 𝛽 and 𝑝𝑘
Apply filter to 𝝆 to obtain �̃� from Eq. (32)
Project filtered densities �̃� to obtain �̄� from Eq. (33)
Solve state problem in Eq. (24) using Eq. (28)
Calculate constraints 𝑔𝑖 , 𝑖 = 1, ..., 𝑛𝑐𝑜𝑛𝑠𝑡𝑟
Compute sensitivities using the adjoint method
Solve MMA to update element densities 𝝆 using MMA

end while

4.1 No connectivity constraint. In the first example, only a
volume constraint is introduced i.e.,

(TO)1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min
𝝆
𝑔0 = −𝑢𝑜𝑢𝑡 = 𝒍𝑇 𝒂

s.t
⎧⎪⎪⎨⎪⎪⎩
𝑔1 =

𝑉

𝛼𝑉𝐷𝐷
− 1 ≤ 0

0 ≤ 𝜌𝑒 ≤ 1, ∀𝑒 ∈ [1, ..., 𝑛𝑒𝑙𝑚]

(52)

where s.t. means subjected to.
The optimized designs in Fig. 3, consists of two symmetrical

but separate islands. Clearly, the optimizer favours discontinuous
designs.

Another interesting result is that all designs have finger-like
structure. Figure 4 compares case 1 in Tab. 3 with a similar
structure, also with 𝛼 = 40% where the electrodes are straight
and symmetrically placed on top and bottom sides. The optimized
structure with ”fingers” has about 3% better performance than the
straight electrode, verifying that the finger-like structure indeed is
favourable for the performance.

4.2 Connectivity constraint. The previous result clearly
shows that discontinuous electrodes improves the performance for
the described problem, however as the source for the electrodes are
located at the bottom of the cylinder, isolated islands are obtained.

Adding the connectivity constraints described in Eq. (40) for
both electrodes, see Fig. 2 for the virtual temperature solution
domain, yields two extra constraints, 𝑔2 and 𝑔3 for the inner and
outer electrodes respectively i.e.,

(TO)2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝝆
𝑔0 = −𝑢𝑜𝑢𝑡 = 𝒍𝑇 𝒂

s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔1 =
𝑉

𝛼𝑉𝐷𝐷
− 1 ≤ 0

𝑔2 =
𝑇𝑝

𝑇𝑟𝑒 𝑓
− 𝜆𝑚𝑎𝑥 ≤ 0

𝑔3 =
𝑇𝑝

𝑇𝑟𝑒 𝑓
− 𝜆𝑚𝑎𝑥 ≤ 0

0 ≤ 𝜌𝑒 ≤ 1, ∀𝑒 ∈ [1, ..., 𝑛𝑒𝑙𝑚]

(53)

The penalisation exponent for the heat supply in the virtual tem-
perature problem was fixed to 𝑝𝑄 = 2. The penalisation exponent
for the thermal conductivity started at 𝑝𝑘 = 2 and increased by
20% every 20th iteration until a maximum 𝑝𝑘 = 10 is reached. In
the p-norm for the fictitious temperature in Eq. (41) 𝑝 = 10 was
used according to Donoso et al. [17]. The upper bound for the
constraint was fixed at 𝜆𝑚𝑎𝑥 = 10.

When enforcing the connectivity constraint in Eq. (40), the
optimization prefers in general thin connections which could cause
problems in the design updates if too much material are removed
from them, potentially causing a reduction in connectivity. To
combat this and stabilise the optimization procedure, an additional
constraint is enforced in each electrode,

𝜆𝑚𝑖𝑛𝑇𝑟𝑒 𝑓 − 𝑇𝑝 ≤ 0, (54)

where a lower bound on the temperature 𝑇𝑝 is enforced. In the
numerical examples, this constraint is inactive in the final designs,
meaning it does not constrain them, but it stabilises the solution
procedure. The lower bound started at 𝜆𝑚𝑖𝑛 = 0 to allow the
constraint to be inactive initially and then increased at iteration 40
to 𝜆𝑚𝑖𝑛 = 𝜆𝑚𝑎𝑥 − 0.01, close to the upper bound.

The optimal designs for the geometries in Tab. 3 are presented
in Fig. 5 where it is clear that at least one solid material connection
exist between top and bottom sides. The connectivity renders 6 −
9% decrease in performance and similar to the previous example,
finger-like structures are formed.

Since the upper limit for the virtual temperature constraint,
𝜆𝑚𝑎𝑥 = 10, is arbitrary other choices could be suitable. In Fig. 6,
a comparison of case 1 in Tab. 3 optimized according to Eq. (53)
for different 𝜆𝑚𝑎𝑥 ∈ {6, 10, 14} are shown. In this comparison
𝜆𝑚𝑖𝑛 is initiated to 0 and then changed to 𝜆𝑚𝑖𝑛 = 𝜆𝑚𝑎𝑥 − 0.01
at iteration 40. In all cases a clear connection is formed between
the upper and lower parts. The material distribution is similar for
𝜆𝑚𝑎𝑥 = 6 and 𝜆𝑚𝑎𝑥 = 10 while 𝜆𝑚𝑎𝑥 = 14 gives a noticeable
difference. The fingers previously seen in Figs. 3 and 5 are again
present.

This numerical experiment shows that the choice of 𝜆𝑚𝑎𝑥 can be
made moderately arbitrarily but for all cases, having the constraint
present generates a connected structure. By inspection of 𝑔0 at
the last iteration and the convergence plot in Fig. 6(d) it can be
seen that higher 𝜆𝑚𝑎𝑥 , in general, results in lower, more negative
𝑔0, meaning larger displacements. This is expected. Higher 𝜆𝑚𝑎𝑥

allows for higher temperatures and therefore thinner connections,
which in turn means that more material can be placed on the top
and bottom parts. This is obviously more beneficial, as can be seen
in the case with no connection in Fig. 3 where all of the material
is placed on the top and bottom parts.
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(a) lz = 40 mm, g0 = −7.46 mm (b) lz = 80 mm, g0 = −7.56 mm

(c) lz = 120 mm, g0 = −7.51 mm

0 100 200 300
Iteration

−6

−4

−2

0

g 0

Objective function

lz = 40 mm

lz = 80 mm

lz = 120 mm

(d) Convergence of objective function

Fig. 3 Projected densities ρ̄ in the design domain for the final optimized structures described in Tab. 3 without connectivity
constraints. As a result, two discontinuous, finger-like islands are formed on top and bottom sides.
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(a) Optimized structure g0 = −7.46 mm

(b) Straight structure g0 = −7.26 mm

Fig. 4 Deformed state for the whole optimized structure for
case 1 in Tab. 3 compared with a structure with straight elec-
trode parts fulfilling the volume constraint. Element densi-
ties with ρ < 0.0001 has been removed and the electric po-
tential φ is plotted on the remaining elements. Note that the
optimized structure has about 3% larger absolute value of
the objective function g0 as compared to the straight case.

5 Conclusions
This work has presented a density-based topology optimization

framework for EAPs ensuring continuously connected electrodes.
The developed method for connectivity, based on the Virtual Tem-
perature Method, has been shown to provide a simple and effi-
cient procedure for ensuring electrodes that are connected to a
given source. Enforcing connectivity decreased the performance
by 6 − 9%, which is a trade off to obtain a functioning structure.

Numerical proof-of-concept examples were presented to asses
the need for connectivity constraints and to show the presented
methodology. Only constraining the maximum virtual temperature
in the Virtual Temperature Method, was found to be insufficient due
to unstable behaviour in the optimization iterations. To stabilize the
optimization, a lower bound for the temperature 𝑇𝑝 was introduced.
Although one should note that this lower bound constraint was
not active in the final designs and used solely for stabilising the
optimization process.

The value of the upper bound for the virtual temperature was
shown to not greatly affect the connectivity, but as expected higher
values resulted in better performance. Also, multiple connections
were created between the electrode parts due to only a quarter of
the full structure being used in the optimization. For a physical
electrode it is sufficient with only one connection between the
different electrode parts. This could be realized by modelling the
full structure.

A natural continuation based on this work would be to directly
optimize the placement of the electrodes, possibly by introducing
the electrodes as an additional material to the EAP. This would
provide more design freedom for the optimization and thereby im-
proved performance.
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Nomenclature
𝒂 = solution vector
𝑩 = derivatives of shape functions
𝑪 = Cauchy-Green tensor
𝑐𝑒 = electric parameter (N V−2)
D = material tangent
𝑫 = electric displacement (C m−2)

𝐷𝑁 = prescribed electric charge on boundary (C m−2)
𝑬 = electric field (V m−1)
𝑭 = deformation gradient
𝒇 = mechanical body load
𝐺 = shear modulus (Pa)
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(a) lz = 40 mm, g0 = −6.85 mm (b) lz = 80 mm, g0 = −6.90 mm

(c) lz = 120 mm, g0 = −7.07 mm

0 100 200 300
Iteration

−6

−4

−2

0

g 0

Objective function

lz = 40 mm

lz = 80 mm

lz = 120 mm

(d) Convergence of objective function

Fig. 5 Projected densities ρ̄ in the deformed design domain for the final optimized structures described in Tab. 3 with
connectivity constraints. A comparison between the Fig. 5 designs with existing solid phase connection to the Fig. 3
designs without connections shows that enforcing connectivity decrease the performance by about 6 − 9%. Similar finger-
like structures are also still formed.
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(a) λmax = 6, g0 = −6.68 mm (b) λmax = 10, g0 = −6.85 mm

(c) λmax = 14, g0 = −6.91 mm
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(d) Convergence objective function.

Fig. 6 The projected densities ρ̄ in the deformed design domain for different choices for λmax and where λmi n = λmax −0.01
for case 1 in Tab. 3 at the last iteration.
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𝑔0 = objective function (m)
𝑔𝑖 = constraint function
𝑰 = identity tensor
𝐽 = jacobian determinant of deformation gradient
𝑲 = stiffness matrix
𝑲𝑓 = stiffness matrix for PDE filter
𝑲𝑐 = stiffness matrix for VTM
𝐾 = bulk modulus (Pa)
𝑘 = thermal conductivity (W m−1 K−1)
𝑘0 = unit thermal conductivity (W m−1 K−1)
𝒍 = constant vector for objective function
𝑙𝑧 = cylinder length (m)
𝑙0 = length scale in PDE filter (m)
𝑵 = outward unit normal in material configuration, shape

functions
𝑝 = penalisation exponent, parameter for p-norm
𝑄 = heat supply (W m−3)
𝑄0 = unit heat supply (W m−3)
𝒓 = residual
𝒓𝑐 = residual for VTM
𝑟 = cylinder radius (m)
𝑻 = total first Piola-type stress tensor

𝑻𝑁 = prescribed traction
𝑇 = temperature (K)
𝑇𝑝 = approximate maximum temperature (K)

𝑇𝑟𝑒 𝑓 = reference temperature (K)
𝑡 = time (s)
𝑡1 = thickness (m)
𝑡2 = thickness (m)
𝑉 = volume (m3)

𝑉𝐷𝐷 = volume in design domain (m3)
𝑿 = coordinates in the material configuration (m)
𝒙 = coordinates in the spatial configuration (m)

Greek Letters
𝛼 = allowed volume fraction
𝛽 = sharpness parameter
𝜀0 = vacuum permittivity (F m−1)
𝜀𝑟 = relative permittivity
𝜂 = threshold parameter
𝝀 = adjoint vector

𝝀𝑐 = adjoint vector for VTM
𝜆 = factor in VTM constraint

𝜆𝑚𝑎𝑥 = maximum factor in VTM constraint
𝜆𝑚𝑖𝑛 = minimum factor in VTM constraint

𝜌 = element density
�̃� = filtered element density
�̄� = projected element density
𝜙 = scalar electric potential (V)
𝜙𝑔 = prescribed scalar electric potential (V)
𝝋 = deformation mapping (m)

𝝋𝑔 = prescribed displacement (m)
Ω = augmented free energy function

Ωm = mechanical free energy function
Ωmel = electro-mechanical free energy function
Ωel = electric free energy function
Ω0 = material configuration
𝜕Ω0 = boundary to material configuration
Ω𝑡 = spatial configuration
𝜕Ω𝑡 = boundary to spatial configuration

Superscripts and Subscripts
0 = material configuration, objective function
el = electric terms
m = mechanical terms

mel = electro-mechanical terms
𝑡 = spatial configuration
𝜙 = potential component
𝝋 = displacement component

Acronyms and Abbreviations
EAP = electroactive polymer
FEM = finite element method

MMA = method of moving asymptotes
SIMP = solid isotropic material with penalisation

TO = topology optimization
VTM = virtual temperature method
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