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ABSTRACT
Topology optimization is one of the most flexible structural

optimization methodologies. However, in exchange for its high
level of design freedom, typical topology optimization cannot
avoid multimodality, where multiple local optima exist. This
study focuses on developing a gradient-free topology optimization
framework to avoid being trapped in undesirable local optima.
Its core is a data-driven multifidelity topology design (MFTD)
method, in which the design candidates generated by solving
low-fidelity topology optimization problems are updated through
a deep generative model and high-fidelity evaluation. As its key
component, the deep generative model compresses the original
data into a low-dimensional manifold, i.e., the latent space, and
randomly arranges new design candidates over the space. Al-
though the original framework is gradient-free, its randomness
may lead to convergence variability and premature convergence.
Inspired by a popular crossover operation of evolutionary algo-
rithms (EAs), this study merges the data-driven MFTD framework
and proposes a new crossover operation called latent crossover.
We apply the proposed method to a maximum stress minimization
problem in 2D structural mechanics. The results demonstrate that
the latent crossover improves convergence stability compared to
the original data-driven MFTD method. Furthermore, the opti-
mized designs exhibit performance comparable to or better than
that in conventional gradient-based topology optimization using
the P-norm measure.

Keywords: Topology optimization; Deep generative model;
Latent crossover; Maximum stress minimization

1. INTRODUCTION
Topology optimization, first proposed by Bendsøe and

Kikuchi [1], enables the determination of an optimized material
distribution for a structural optimization problem and offers a high
level of design freedom [2]. While this attractive feature makes it
applicable to various structural design problems, topology opti-
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mization faces challenges with multimodality, where multiple lo-
cal optima exist in the solution space [3]. That is, gradient-based
optimizers used in conventional topology optimization methods
may fall into low-performance local optima. This intractable
characteristic is often seen in strongly nonlinear problems, e.g.,
minimax problems; thus it is challenging to obtain structures that
exhibit high levels of performance.

One of the standard ways to overcome the problem of multi-
modality in engineering optimization applications is evolutionary
algorithms (EAs) since they are gradient-free [4]. An EA, such
as the genetic algorithm, mimics the evolutionary mechanisms
of living organisms, and solutions are represented as strings of
genes. The solution search is performed by applying three ba-
sic genetic operations: selection, crossover, and mutation, to a
population of individuals. Each iteration of these genetic opera-
tions is referred to as a generation. The selection is an operation
that retains individuals with relatively better objective function
values in the population for the next generation. The crossover
is an operation that partially exchanges genes between selected
individuals to generate new individuals (offspring) that inherit
traits from old ones (parents). However, if some individuals in
the population have significantly higher fitness than others in the
early stages of the search, they may weed out others by selection
and crossover, leading to a loss of diversity and a high probability
of premature convergence [5]. The mutation is an operation that
introduces new genes into the population by changing a portion of
the genes of selected individuals, which helps maintain diversity
in the population. Several methods [6–9] have been proposed
to solve topology optimization problems using EAs, taking ad-
vantage of their gradient-free nature. While they can perform a
global search for strongly nonlinear problems, Sigmund [10] has
pointed out issues with EA-based topology optimization. That
is, topology optimization problems often require a large number
of design variables, and the computational cost of the EA in-
creases exponentially with the number of design variables due to
the so-called curse of dimensionality.

As a potentially promising way to avoid the curse of di-
mensionality, some deep generative models can dramatically re-
duce the dimensionality of the topology optimization problem.
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(a) Parent individuals (b) Uniform random sampling (c) Normal random sampling (d) Latent crossover

FIGURE 1: PROBABILITY DISTRIBUTION FOR GENERATING OFFSPRING IN 2D LATENT SPACE. BLUE DOTS AND SHADING DENOTE THE
GENERATION DISTRIBUTION OF PARENTS AND OFFSPRING, RESPECTIVELY.

Variational autoencoders (VAEs) [11] and generative adversarial
networks (GANs) [12] are popular deep generative models. In
a VAE, an encoder is built to compress high-dimensional data
into a low-dimensional manifold, called latent space, and maps it
to a probability distribution, while a decoder reconstructs high-
dimensional data from the latent space. In a GAN, a generator
creates new data samples by starting from random noise and try-
ing to produce data that is indistinguishable from real data. a
discriminator, on the other hand, assesses these generated sam-
ples and tries to distinguish them from real data. As a review
paper [13] mentioned, relevant studies on deep generative mod-
els for engineering design problems have increased dramatically
in recent years. As pioneering work, Guo et al. [14] proposed a
data-driven indirect design representation for high-dimensional
design problems, which iteratively optimizes the latent space of
a VAE as the design variable field. Oh et al. [15] proposed
a design framework that iteratively trains a GAN to generate a
variety of designs. Kazemi et al. [16] proposed a method to gen-
erate conceptual designs using a GAN for multi-physics topology
optimization problems.

Based on combining EAs and deep generative models, Yaji
et al. [17] proposed a data-driven multifidelity topology design
(MFTD) method that enables gradient-free topology optimiza-
tion. The basic idea of data-driven MFTD is that design can-
didates, generated by solving low-fidelity topology optimization
problems, are iteratively updated using an EA that guides queries
to a high-fidelity analysis model. The key to this framework
builds upon data-driven topology design [18], incorporating a
VAE as a crossover-like operation for each optimization step.
The effectiveness of the framework was demonstrated for topol-
ogy optimization problems that are hard to solve directly with
conventional methods, such as minimax and turbulent flow prob-
lems. However, since the generative process in a VAE is based on
a uniform random sampling in the latent space, it is expected that
the effectiveness of the approach can be improved if the crossover
operation is adopted based on EAs.

This paper proposes a particular crossover operation based
on EAs, called latent crossover, for the data-driven MFTD frame-
work. Specifically, simplex crossover (SPX) [19]—a crossover
operator of real-coded genetic algorithms (RCGAs) [20]—is used
for latent crossover. We apply the proposed method to a maxi-

mum stress minimization problem of an L-bracket and verify the
effectiveness of latent crossover, comparing it with the original
data-driven MFTD. We also discuss its usefulness by comparing
the results of the proposed method with those of gradient-based
topology optimization using the %-norm measure for the maxi-
mum stress minimization problem.

2. LATENT CROSSOVER
In data-driven MFTD [17], whose details are described in

Section 3, the high-dimensional material distribution data of the
design candidates are encoded by a VAE into low-dimensional
real-valued latent variables that correspond to EA genes, mak-
ing the framework similar to the RCGA among EAs. Its high
representation flexibility makes crossover more important in the
RCGA than in the binary GA, and it has been the subject of var-
ious studies. For example, Kita and Yamamura [21] proposed a
theory called the function specialization hypothesis concerning
the selection and crossover operators in RCGAs, which includes
the following ideas:

• The selection operator eliminates individuals with low fit-
ness and, meanwhile, selects and replicates those with high
fitness. Therefore, it is designed to narrow the population
distribution gradually.

• The crossover operator transforms the distribution by com-
bining parent individuals to generate offspring and is de-
signed to retain the ability to generate new offspring for a
finite population, but not to change the population distribu-
tion.

The design guideline for RCGA crossover operators uses statistics
to concretize the above theory [22–24]. Specifically, the crossover
operator should be designed to inherit statistics such as the mean
vector and variance/covariance matrix of the population.

In data-driven MFTD, candidate solutions are generated
through random sampling from the latent space of a VAE, so
in terms of the genetic distribution and statistics of the popu-
lation, we consider the probability distribution of the generated
offspring. Fig. 1 shows an example of the probability distribution
for generating offspring in a two-dimensional latent space in the
range from -2 to +2 for each dimension. The darker areas have
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FIGURE 2: SCHEMATIC ILLUSTRATION OF DATA-DRIVEN MFTD WITH LATENT CROSSOVER

a higher probability of generating offspring . Assuming that the
distribution of the parent population, as shown in Fig. 1a, is given,
data-driven MFTD performs sampling based on a uniform dis-
tribution in the latent space, regardless of the distribution of the
parent population. The resulting probability distribution of the
generated offspring becomes the one shown in Fig. 1b. It cannot
be said that the statistics of the parent population are inherited.
Although the use of a VAE as a deep generative model enables a
crossover-like operation in the original data-driven MFTD, it is
similar to crossover but cannot be considered strictly performing
crossover because of random sampling. Since the input data fol-
lows a normal distribution in the latent space due to the nature
of VAEs [11], generating offspring through sampling based on a
normal distribution rather than a uniform distribution can be con-
sidered reasonable. However, as shown in Fig. 1c, the probability
of generated offspring does not follow the distribution of the par-
ent population; therefore, the statistics of the parent population
are not inherited in this case either. Based on the EA concept,
preserving the diversity of the population helps prevent premature
convergence, but crossover-like sampling from the latent space
using random sampling can lead to an early loss of diversity in
the population. This results in fluctuation in convergence and, in
the worst case, failures to perform a global search, leading to the

possibility of getting stuck in local optima.
As mentioned above, it is impossible to strictly inherit the

statistical characteristics of the parent population through random
sampling. According to its nature, a crossover operation gener-
ates offspring by targeting small areas for parents who are close
together and large areas for those who are far apart [25]. Thus,
applying latent crossover to the parent population in Fig. 1a, the
probability distribution of generated offspring is expected to be-
come the one shown in Fig. 1d. Therefore, it can be said that a
crossover operation in the latent space, i.e., the latent crossover,
is promising.

3. FRAMEWORK
3.1 Data-Driven MFTD with Latent Crossover

Data-driven MFTD focuses on solving the following general
multi-objective topology optimization problem:

minimize
$

[�1 ($), �2 ($), . . . , �A0 ($)]

subject to �9 ($) ≤ 0,
W4 ∈ {0, 1}, 4 = 1, 2, . . . , #.

(1)

Here, �8 (8 = 1, 2, . . . , Ao) and �9 ( 9 = 1, 2, . . . , Ac) are the ob-
jective and constraint functions, respectively. The optimization
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problem defined by Eq. (1) is a 0-1 optimization problem with
$ composed of # design variables. Since such a problem is
a nonlinear mathematical optimization problem with a massive
number of design variables, we adopt the concept of multifidelity
topology design (MFTD) [26] and divide the problem of Eq. (1)
into two procedures: low-fidelity optimization and high-fidelity
evaluation. The low-fidelity optimization is formulated as an eas-
ily solvable pseudo-problem and is used to generate a variety of
candidate solution structures by employing artificial parameters.
On the other hand, the high-fidelity evaluation is used to eval-
uate the performance of candidate solutions using objective and
constraint functions formulated by Eq. (1).

Using the MFTD approach and a deep generative model,
data-driven MFTD iteratively updates solution candidates in a
gradient-free manner similar to EAs. Note that the latent space
is updated at every optimization step. The schematic flow of the
proposed data-driven MFTD with latent crossover is shown in
Fig. 2, and the details of each step are explained below.

Initial Data Generation For the original optimization problem
of Eq. (1), we solve a low-fidelity optimization problem
formulated as follows, which can be easily solved as a simple
pseudo-problem:

minimize
$ (:)

�̃8 ($ (: ) )

subject to �̃9 ($ (: ) , s(: ) ) ≤ 0,

W
(: )
4 ∈ [0, 1], 4 = 1, 2, . . . , #

for given s(: ) , : = 1, 2, . . . ,  .

(2)

Here, �̃8 and �̃9 are the objective and constraint functions for
the low-fidelity optimization problem, respectively, which
can be easily computed by pseudo-functions. Additionally,
s = [B1, B2, . . . , B#sd ] represents the set of #sd types of arti-
ficial design parameters called seeding parameters, and s(: )
is the sample point of s. For instance, the seeding param-
eters are defined as the maximum limit of constraints and
optimization parameters such as the filter radius. By solv-
ing the relaxed low-fidelity optimization problem of Eq. (2)
under various seeding parameter settings, where W (: )4 is re-
laxed to [0, 1],  kinds of promising and diverse material
distributions are prepared as initial solutions.

Evaluation The performance of candidate solutions is evaluated
using a high-fidelity analysis model, which is used to com-
pute the original multiple objective functions �8 and �9 in
Eq. (1) with discrete W4 binarized to {0, 1}.

Selection As mentioned in Section 2, selection is a critical ge-
netic operation in RCGAs. For problems as in Eq. (1), it
is necessary to evaluate solutions using multiple objective
functions and select those to be preserved in the next gen-
eration. This paper uses the nondominated sorting genetic
algorithm II (NSGA-II) [27] strategy as a selection algo-
rithm, which selects candidates in a multi-objective manner
by ranking them based on the Pareto dominance relation us-
ing distances in the objective function space. The nondomi-
nated candidate solutions are selected based on performance

evaluation values from the high-fidelity model, and then a
set of Pareto solutions is constructed.

Crossover A VAE is trained with the Pareto solution set as input
to construct a latent space, where high-dimensional material
distributions are encoded into low-dimensional latent vari-
ables. Here, it is important to note that the learning data
is not accumulated iteratively but rather, a fixed number of
data to be selected is predetermined, and a VAE is trained
anew in each iteration. Latent crossover is performed us-
ing these latent variables to generate offspring in the latent
space. Decoding the offspring generated by latent crossover
yields new material distributions that inherit the characteris-
tics of the input data, and candidate solutions are generated.
The details of the VAE and the latent crossover operation
are described in Sections 3.2 and 3.3, respectively.

Mutation The latent space of the VAE is constructed using the
Pareto solution set of the current generation and corresponds
to a subspace in which the solutions are distributed. Even
if the mutation method of RCGAs, such as the nonuniform
mutation operator [28], is applied in the latent space, its
outcome is limited to a specific subspace against the whole
solution space. This limitation exists because such a mu-
tation only performs a local search in the subspace around
the solutions distributed in the whole solution space. Thus,
it cannot be expected to maintain the diversity of the pop-
ulation and prevent premature convergence, as discussed in
Section 1.

Therefore, under the following constraint function, the low-
fidelity optimization problem is solved using the same
method as when generating initial data:

�̃mut ($ (<) ) =
#∑
4=1

{4W
(<)
4 W

ref(<)
4 ≤ �̃max

mut |� |, (3)

where < = 1, 2, . . . , #mut is the number of mutants, {4 is
the elemental volume, �̃max

mut is a parameter that controls the
degree of overlap between the reference material distribution
$ref(<) and the design variable $ (<) , and |� | = ∑#

4=1 {4 is
the volume of �. In brief, the role of the constraint of Eq. (3)
is to generate a different material distribution from W

ref(<)
4 .

This paper uses the average value of material distributions
in a given generation as a reference structure. This average
distribution can be considered to be representative of the
material distributions of the population. By solving the low-
fidelity optimization problem with the constraint function
of Eq. (3) and the reference structure, promising candidate
solutions can be generated with unique features that are not
present in the population. This approach enables a mutation-
like operation, similar to the mutation in EAs, to maintain
diversity and prevent premature convergence. It should be
noted that the mutants added to the population through this
operation are still limited to a specific subspace and may not
search the whole solution space comprehensively.
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FIGURE 3: ARCHITECTURE OF VAE

3.2 Variational Autoencoder
Fig. 3 shows the architecture of the VAE used in the nu-

merical examples in Section 4. 6400 input/output elements are
combined into two 8-dimensional layers, - and 2, through a hid-
den layer of 512 dimensions. - is the mean vector, and 2 is the
variance vector of the latent variables z. The following equation
defines the latent variable vector z:

z = - + 2 � 9, (4)

where � is the operator that calculates the element-wise product,
and 9 is a vector of random numbers from the standard normal
distribution. In VAEs, unsupervised learning is performed using
the same dataset for both input and output, constructing the latent
space. The following loss function !VAE is used for the training:

!VAE = !recon + r!KL, (5)

!KL = −1
2

#lt∑
8=1

(
1 + log(f2

8 ) − `2
8 − f2

8

)
, (6)

where #lt is the dimension of the latent space, `8 and f8 are the
8-th elements of - and 2. !recon is a reconstruction loss using
mean squared error, and !KL is known as the Kullback-Leibler
(KL) divergence. r is the weight parameter that controls the
influence of the KL divergence to regularize the latent space to
the standard normal distribution.

Here, the VAE trained with the architecture shown in Fig. 3
and the loss function of (5) constructs a latent space following
a single standard normal distribution. In contrast, there are ad-
vanced generative models such as Gaussian mixture VAEs [29]
whose latent space follows multiple distributions. For instance,
based on this idea, Tsumoto et al. [30] have proposed a cluster-
ing method for solutions obtained through topology optimization.
Due to the search mechanism of evolutionary algorithms, data-
driven MFTD could involve the training data being distributed
into several clusters, and Gaussian mixture VAEs might provide
better learning accuracy compared to standard VAEs in such
cases. However, as mentioned in Section 3, since VAEs are
trained anew at each iteration in the optimization process, this
study employs the above standard VAEs in terms of computa-
tional cost and learning stability.

Compared to simple dimensionality reduction using autoen-
coders (AEs), VAEs are trained by incorporating probabilistic

G

P0

P1

P2

P′0

P′1

P′2

FIGURE 4: SPX OFFSPRING GENERATION AREA FOR 2D

variation through 9, allowing for estimation of the given dataset
distribution, and can be used as a deep generative model for
continuous data generation. When using material distributions
as a dataset for topology optimization, essential features within
the dataset are extracted by compressing them into dramatically
smaller latent variables. According to the standard normal dis-
tribution, latent variables do not take extremely large or small
values. To represent all material distributions without excessive
randomness, original data-driven MFTD [17] generates offspring
by sampling uniform random numbers in [−4, 4], which covers
99.7% of the data within ±4f, for each latent variable. However,
as mentioned in Section 2, generating offspring with a uniform
probability distribution in the latent space, as shown in Fig. 1b,
regardless of the distribution of parent individuals, can be prob-
lematic. In this paper, we perform latent crossover using the
crossover operator explained in Section 3.3.

3.3 Simplex Crossover
Due to the high degree of freedom of representing genes

as real-valued vectors, the RCGA has limited offspring that can
be generated from selected parent individuals using crossover
operators, such as the single-point crossover commonly used in
binary evolutionary algorithms. Several crossover operators for
RCGAs [19, 31, 32] have been proposed to address this issue.
This paper uses the simplex crossover (SPX) [19] for a latent
crossover operator. SPX is one of the multi-parent crossover
operators for RCGAs that generates offspring using three or more
parent individuals and is consistent with the crossover design
guidelines [22–24] as it inherits the average value and covariance
matrix of the population.

When the search space is defined as the real =-dimensional
space R=, where individuals are represented as vectors of real
numbers, the algorithm for SPX is as follows.

(1) Randomly select (= + 1) parent individuals V0, V1, . . . , V=

from the population.

(2) Calculate the centroid M of the parent individuals as follows:

M =
1
=

=∑
8=0

V8 . (7)
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FIGURE 5: DESIGN PROBLEM OF L-BRACKET

(3) Calculate variables x: and I: for : = 0, 1, . . . , = as follows:

x: = M + Y(V: − M), (8)

I: =

{
0 (: = 0)
A:−1 (x:−1 − x: + I:−1) (: = 1, . . . , =).

(9)

Here, Y is the expansion rate parameter, and
√
= + 2 is the

recommended value for inheriting population statistics [19].
A: is obtained by transforming a uniform random number
D(0, 1) in the interval [0, 1] as follows:

A: =

{
D(0, 1) 1

:+1 (: = 0, . . . , = − 1)
1 (: = =).

(10)

(4) Generate a child individual I as follows:

I = x= + I=. (11)

With these procedures, SPX generates offspring uniformly within
the enclosed space of the Y-extended polytope %′

0, %
′
1, . . . , %

′
=

centered at the centroid of the parent individuals %0, %1, . . . , %=,
as shown in Fig. 4. Therefore, SPX is a crossover operator that
achieves a balance between exploration and exploitation [33].

4. NUMERICAL EXAMPLES
4.1 Problem Setting

Data-driven MFTD, as mentioned in Section 3.1, is a frame-
work for multimodal optimization problems with high nonlin-
earity, and targets problems where the low-fidelity optimization
problem is formulated as an easily solvable pseudo-problem for
the original one to be solved.

This study applies the proposed method to the design prob-
lem of a two-dimensional L-bracket. It is widely used as a bench-
mark for stress-based topology design [34–37] and is a minimax
problem with its high nonlinearity caused by the stress singularity

100 101 102

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L
o
s
s

FIGURE 6: LEARNING HISTORY AT ITERATION 0 OF OUR VAE,
WHERE THE ARCHITECTURE IS GIVEN AS FIG. 3, THE LOSS
FUNCTION IS DEFINED AS EQ. 5, AND THE TRAINING DATA IS DE-
SCRIBED IN SECTION 4.4

at the re-entrant, inner corner. It is formulated as the following
multi-objective optimization problem:

minimize
$

�1 = max (fvM) ,

�2 =

#∑
4=1

{4W4

subject to W4 ∈ {0, 1}, 4 = 1, 2, . . . , #.

(12)

Here, fvM is the von Mises stress, the maximum of which is an
objective function, and the volume is the other objective function.
Note that the design variables are defined as discrete values, 0
or 1, to deal with the ideal topology optimization problem with
high-fidelity evaluation, and {4 is the elemental volume.

The design domain and boundary conditions for the L-
bracket, as shown in Fig. 5, include fixing the upper edge and
applying a vertical downward distributed load at the top right
corner to avoid stress concentration. The length of the bracket is
set to ! = 2, and the design domain is divided into 6400 square
elements (# = 6400). Young’s modulus of the structural material
is set to 1, one of the voids is set to 1× 10−9 instead of 0 to avoid
the singular stiffness matrix, and Poisson’s ratio is set to 0.3.

It is necessary to formulate the low-fidelity optimization
problem as a simple problem that can be easily solvable. In
previous studies [17, 26], the focus was on the fidelity of physical
phenomena, and the governing equations of the flow model were
modified. In this study, we also refer to this method and formulate
the minimum compliance problem as a low-fidelity optimization
problem under the assumption that a promising solution can be
obtained even with stiffness maximization [35]:
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minimize
$ (:)

�̃1 = fTu

subject to �̃2 =

#∑
4=1

{4W
(: )
4 ≤ B (: ) ,

W
(: )
4 ∈ [0, 1], 4 = 1, 2, . . . , #

for given B (: ) .

(13)

Here, f and u are vectors in the equilibrium equation, namely,
Ku = f, with the global stiffness matrix K. In Eq. (13), the volume
is converted from an objective function to a constraint function
based on the Y-constraint method for the original optimization
problem of Eq. (12), and since W (: )4 is relaxed to [0, 1], this prob-
lem can be easily solved using the density-based method [2]. Note
that the density filter [38, 39] is applied to ensure the smooth-
ness of $ in �, and we use the method of moving asymptotes
(MMA) [40] as the gradient-based optimizer.

As for the parameters set based on preliminary studies related
to the overall procedure, the number of initial data and Pareto
solutions from the selection operation are set to 100 and 300,
respectively. Regarding the parameters related to the mutation
operation, #mut is set to 16, and �̃max

mut is set to 0.01. During the
latent crossover, 9 parent individuals are used by the SPX method
because the dimension of the VAE latent space is 8.

4.2 Verification of VAE Model
First, we verify the VAE model and parameters, which play

a central role in data-driven MFTD. After preliminary studies on
the hyperparameters, we establish the VAE architecture as shown
in Fig. 3. The VAE is trained with 100 material distribution
samples with 500 epochs, a batch size of 20, and a learning rate
of 0.001. The training is terminated if the loss function !VAE
of Eq. (5) is not improved in every iteration for a total of 50
iterations.

Fig. 6 shows the history of the loss function in Eq. (5) dur-
ing training using the material distribution data at iteration 0
described in Section 4.4 as an example. The number of epochs
is represented on a logarithmic scale to highlight the areas with
significant changes in the loss function. The loss function con-
verges smoothly, indicating that the VAE is appropriately trained
under the investigated condition.

4.3 Verification of Latent Crossover Effect
For the problem set up in Section 4.1, we compare the orig-

inal and proposed data-driven MFTD frameworks. Since both
methods involve random effects, we evaluate and compare them
using the hypervolume indicator [41] over ten trials, which is
normalized using the initial one. The hypervolume is a measure
of the convergence performance of multi-objective optimization.
In the case of two objectives, it is represented by the area formed
by the reference point and the Pareto front in the objective space
as shown in Fig. 7, so a larger hypervolume value means that the
Pareto front has progressed. Although mutation is usually per-
formed at regular intervals of iterations, we confirmed that in the
case of this design problem, the mutants are selected only once

min J1

m
in

 J
2

Hypervolume

Reference point

Non-dominated solutions

FIGURE 7: ILLUSTRATION OF HYPERVOLUME IN THE CASE OF
TWO-OBJECTIVE OPTIMIZATION

at the beginning, and no mutants are selected as elite solutions
thereafter. Therefore, we used the initial data composed of the
mutants and initial solutions to compare them with the search
performance by crossover without mutation. As this validation
involves multiple computations due to the inclusion of random-
ness, the number of Pareto solutions created through selection
has been set to 100 for computational efficiency.

Fig. 8 shows the iteration history of the hypervolume indica-
tor over ten trials. Note that its value of each iteration is relative
hypervolume normalized by the initial one. In terms of the value
at 100 iterations, random sampling in Fig. 8a shows a consid-
erable variation in the range from 1.38 to 1.52, while the latent
crossover in Fig. 8b remains stable in the range from 1.48 to 1.54.
The average values of each hypervolume indicator in the ten tri-
als are plotted in Fig. 9. Up to iteration 30, the value of random
sampling is higher than that of latent crossover. However, after
iteration 30, this relationship is reversed, and at iteration 100, the
average value of random sampling is 1.45, while that of latent
crossover is 1.50, indicating a difference of 5%. In addition, at
iteration 100, the lower limit of the 95% prediction intervals for
the latent crossover case exceeds the upper limit for the random
sampling case. A t-test was performed on the hypervolume val-
ues at iteration 100, and the p-value was 0.00180, which is less
than 0.05. Therefore, it can be considered statistically significant
that the latent crossover outperforms the random sampling.

Additionally, We compare the performance of the best and
worst cases among the 10 trials shown in Fig. 9 in terms of
the relative hypervolume value. Fig. 10 presents a comparison
of their performance. It is evident from Fig. 10 that the best
case with latent crossover achieved the most advanced Pareto
front. Even in the worst case with latent crossover, the Pareto
front exhibits a spread in the objective function space, whereas in
the worst case with random sampling, the Pareto front is highly
contracted and fails to maintain diversity. This issue could be
serious regarding the nature of EAs [5], as there is an increased
risk that the optimized structures are local optima with poor
performance.

7 Copyright © 2024 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanical Design. Received July 14, 2023;
Accepted manuscript posted February 17, 2024. doi:10.1115/1.4064979
Copyright © 2024 by ASME; reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edc.silverchair.com
/m

echanicaldesign/article-pdf/doi/10.1115/1.4064979/7249972/m
d-23-1482.pdf by guest on 20 M

arch 2024



(a) Random sampling (b) Latent crossover

FIGURE 8: HYPERVOLUME FOR TEN TRIALS OF RANDOM SAMPLING VERSUS LATENT CROSSOVER OPERATIONS FOR DATA-DRIVEN
MFTD

FIGURE 9: COMPARISON OF HYPERVOLUME FOR RANDOM SAM-
PLING VERSUS LATENT CROSSOVER OPERATIONS FOR DATA-
DRIVEN MFTD

The SPX operator used as the latent crossover operator grad-
ually changes the population distribution while inheriting the
statistics, so the increase in hypervolume is slower in the early
stages of the search (up to iteration 30) compared to the ran-
dom sampling. Therefore, this approach maintains diversity and
prevents premature convergence, which leads to a more advanced
Pareto front in the final iteration (at iteration 100) in Fig. 10. This
improvement can be explained based on the theory that the bal-
ance between exploration and exploitation [33], i.e., expanding
the Pareto front and advancing it, respectively, is significant in
EAs. From these results and discussions, it can be concluded that
data-driven MFTD achieved stable and high search performance

FIGURE 10: OBJECTIVE SPACE REPRESENTED AS VOLUME VER-
SUS MAXIMUM VON MISES STRESS FOR RANDOM SAMPLING
VERSUS LATENT CROSSOVER FOR DATA-DRIVEN MFTD

with the latent crossover based on the theory of RCGAs.

4.4 Validity of Optimized Structure
Next, we compare the structures obtained through data-

driven MFTD with structures obtained through direct optimiza-
tion using a gradient-based approach without relying on MFTD
principles. Despite only solving the mean compliance minimiza-
tion problem of Eq. (13) as the low-fidelity optimization problem,
we investigate how closely the structures obtained by data-driven
MFTD can approach the performance of structures obtained by
conventional gradient-based optimization. Additionally, we ex-
amine the differences between these structures.
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FIGURE 11: OBJECTIVE SPACE REPRESENTED AS VOLUME VERSUS MAXIMUM VON MISES STRESS AND CORRESPONDING OPTIMIZED
STRUCTURES FOR GRADIENT-BASED TOPOLOGY OPTIMIZATION (GTO) VERSUS DATA-DRIVEN MFTD (FOR GTO, AN EXCERPT SHOW-
CASING THE OPTIMIZED DESIGNS WITH A THRESHOLD OF 50 IS PROVIDED.)

Here, we set various conditions for gradient-based topol-
ogy optimization. Firstly, given that �1 represents the maximum
value of von Mises stress and W4 takes a discrete value in {0, 1},
sensitivity analysis becomes impractical for the formulation of
the optimization problem in Eq. (12). Therefore, we use the %-
norm measure [42, 43], commonly used in stress-based topology
optimization [35, 36], and relax W4 to [0, 1], as follows:

minimize
$

� =

(
1
#

#∑
4=1

(fvM)%
) 1

%

subject to � =

#∑
4=1

{4W4 ≤ +max |� |,

W4 ∈ [0, 1], 4 = 1, 2, . . . , #.

(14)

Here, % is the stress norm parameter, and � is called %-norm
stress. For the multi-objective problem formulated in Eq. (12), the
volume is set as the constraint function based on the Y-constraint
method. When the stress norm parameter % → ∞, the %-norm
stress approaches the maximum stress value max(fvM), but the
smoothness is lost. On the other hand, when % = 1, the smooth-

ness is maintained, but it approaches the average stress value,
resulting in an optimized structure closer to the compliance min-
imum design. Previous studies [35, 37] have shown that % = 8
yields the most reasonable designs, and we also use this value
in this study. The optimization problem formulated in Eq. (14)
is solved using the density-based method [2] with the density
filter [38, 39], following the commonly employed gradient-based
topology optimization approach. A filter radius is set to 0.05,
which corresponds to 2.5 element sizes. Additionally, in order to
binarize W4 and translate the solution as the original optimization
problem of Eq. (12), the Heaviside projection [44] is applied to
remove the grayscale generated by the density filter. A threshold
parameter [ is set to 0.5, and the sharpness parameter V is dou-
bled at each constant step, employing a continuation approach.
The final result and convergence behavior can be influenced by
the continuation threshold. Hence, multiple thresholds of 100,
50, and 20 are used, including the method without the continua-
tion. We use the MMA [40] as the gradient-based optimizer and
the move limit is set to 0.05. The initial value for W4 is set to
match the volume fraction +max used as the constraint function
in Eq. (14). For example, for a volume constraint of 30%, the
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FIGURE 12: INITIAL DATA GENERATED BY SOLVING A MEAN COMPLIANCE MINIMIZATION PROBLEM UNDER VARIOUS VOLUME CON-
STRAINT SETTINGS AS THE LOW-FIDELITY TOPOLOGY OPTIMIZATION PROBLEM

initial value will be set to 0.3. Varying +max from 0.2 to 0.5
in increments of 0.005 to generate multiple solutions, binarizing
W4 at 0.5 to create a Pareto solution set for the original problem
of Eq. (12), and then we compare it with the solutions obtained
using the proposed method. The maximum number of steps is
set to 300.

Fig. 11 illustrates the structures and performance comparison
of results obtained through gradient-based topology optimization
(GTO) and data-driven MFTD. First, we discuss the optimization
results of data-driven MFTD.

Fig. 12 shows the initial dataset obtained by solving the low-
fidelity optimization problem in Eq. (13). The initial dataset,
which consists of compliance minimization designs, has struc-
tures that cause stress concentration at their re-entrant corners,
whereas the optimized structures shown in Fig. 11 have rounded
shapes with their re-entrant corners smoothed out. The improved
performance and reduced volume can be seen by comparing the
plots of iteration 0 and iteration 400 in the objective function
space shown in Fig. 11.

When comparing the optimization results of GTO and data-
driven MFTD in Fig. 11, it can be confirmed that the solutions
obtained from data-driven MFTD exhibit performance compara-
ble to or better than those from GTO. This is particularly notable
in the volume fraction range of 0.3 to 0.5. In the range of lower
volume fractions from 0.2 to 0.3, GTO exhibits significant varia-
tions in structural performance due to the parameter of continua-
tion thresholds. This suggests that it might be getting trapped in
local minima with poor structural performance, likely due to the
multimodality caused by the strong nonlinearity of the objective
function in Eq. (14). Additionally, even with the application of
the Heaviside projection, complete removal of the grayscale is
not achievable, and especially for low-volume structures, there is
a tendency for discontinuities, leading to significant changes in
maximum stress values before and after the binarization of W4,
as pointed out by Kato et al. [45]. These effects result in the
solutions obtained by GTO having a sparse distribution in the
objective space. On the other hand, as described in Section 3,

data-driven MFTD employs an evolutionary algorithm, enabling
gradient-free solution updates. This means it is less affected by
the multimodality of the objective function. Additionally, using
Eq. (12) for high-fidelity evaluation of the maximum stress itself
with discrete W4, rather than using the %-norm stress with con-
tinuous W4 in Eq. (14), allows the obtained solutions to dorm an
orderly Pareto front. Here, the poor performance of the data-
driven MFTD solutions in the range of volume fractions from
0.2 to 0.3 may attributed to the mutation method. As described
in Section 3.1, in data-driven MFTD, we introduce an overlap
constraint as a mutation method to solve the LF optimization
problem, generating promising structures different from the ref-
erence design. The parameter �̃max

mut , which controls the degree of
overlap, uses a constant value independent of the volume. There-
fore, while larger structures may be effectively mutated, smaller
structures might face challenges in obtaining valid solutions. Due
to the reduced effect of the mutation in low-volume regions, it is
speculated that the method has led to a kind of local optimum.
This suggests that there is room for improvement in the mutation
strategy.

Comparing the optimized structures in Fig. 11, the designs
obtained by GTO successfully avoid stress concentration at their
re-entrant corners. However, they consist of straight members
and often have triangular or rectangular voids. One of the ad-
vantages of data-driven MFTD is that material distributions are
represented as vectors and updated using a VAE, eliminating
the need for sensitivity analysis. Therefore, as in Eq. (12), the
maximum stress can be used directly as the objective function.
This feature leads to overall curved structures with rounded ap-
pearances at their re-entrant corners and elsewhere, as shown in
Fig. 11, suggesting that stress concentration is further avoided.
In addition, the optimized designs obtained through GTO exhibit
various patterns, suggesting entrapment in local minima due to
the multimodality of the %-norm stress in Eq. (14). On the other
hand, the optimized designs obtained through data-driven MFTD
exhibit nearly identical topologies regardless of volume, differ-
ing mainly in member thickness. Compared to GTO, data-driven
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(a) GTO (continuation off)

(b) GTO (threshold 100)

(c) GTO (threshold 50)

(d) GTO (threshold 20)

(e) Data-driven MFTD

FIGURE 13: OPTIMIZED STRUCTURES WITH VOLUME FRACTIONS OF 0.2 TO 0.3
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MFTD achieves global search and appears to reach a promising
structural topology. Optimized structures with volume fractions
of 0.2 to 0.3, where these trends are clearly reflected, are shown
in Fig. 13. In the case of GTO, it is evident that regardless of con-
tinuation thresholds, structures differ significantly even with only
a 0.005 difference in volume fraction constraint. This confirms
that solutions obtained through GTO are merely local solutions
due to multimodality. On the other hand, the optimized struc-
ture obtained through data-driven MFTD in Fig. 13e maintains
a consistent topology regardless of volume. This demonstrates
an effective optimization, even for low-volume structures, where
conventional GTO struggles, indicating resilience against the in-
fluence of multimodality.

As described above, it has been demonstrated that the data-
driven MFTD framework can address the complex problem of
maximum stress minimization by solving the simple problem
of mean compliance minimization as a low-fidelity optimization
problem. Compared to the solutions by conventional gradient-
based optimization, the obtained structures exhibit comparable
or better performance and have similar characteristics in terms of
avoiding the stress concentration at re-entrant corners. This find-
ing suggests that data-driven MFTD may be capable of deriving
promising solutions in a gradient-free manner, even in cases of
strong multimodal problems where gradient-based optimization
is more challenging or potentially infeasible. Note that using
multiple initial values in gradient-based topology optimization
might yield the optimized structures similar to or better than those
obtained with data-driven MFTD. However, it is unclear which
initial values should be employed, or whether better solutions
exist in the first place. Compared to conventional gradient-based
topology optimization, the result indicates that the data-driven
MFTD method is likely to yield a unique set of Pareto solutions
through an extensive search process.

To generate the data in Fig. 11, we run both data-driven
MFTD and GTO codes over a 2.7 GHz AMD Ryzen Threadrip-
per PRO 3995WX 64-Cores CPU. The VAE code for data-driven
MFTD was run on a NVIDIA RTX A6000 GPU. The time re-
quired to generate the optimized structures in Fig. 11 was 33.7
minutes for GTO, while data-driven MFTD took 6.8 hours. It
should be noted that there are potential future improvements to
accelerate data-driven MFTD, such as training a VAE every fixed
iteration instead of every iteration and utilizing surrogate models
for structural performance evaluation.

5. CONCLUSION
This paper proposed a latent crossover strategy that performs

crossover in the latent space of the variational autoencoder (VAE)
for the data-driven multifidelity topology design (MFTD) frame-
work. Since the latent space is constructed with continuous real
numbers, this paper employed the simplex crossover (SPX) as
a latent crossover operator based on the theoretical aspects of
crossover in real-coded genetic algorithms (RCGAs). The results
showed that the proposed method improves the search perfor-
mance compared to the original method, which performs random
sampling in the latent space. As an interesting aspect, this pa-
per confirms that the proposed method achieves almost the same
performance as that of gradient-based topology optimization us-

ing the %-norm measure for the maximum stress minimization
problem, despite only solving the mean compliance minimiza-
tion problem as the low-fidelity topology optimization problem.
Furthermore, it was found that the final results of the proposed
method tend to achieve a similar topology, while the optimized
results of the gradient-based method exhibit various patterns due
to the multimodality caused by the strong nonlinearity of the
%-norm measure. Hence, the data-driven MFTD approach is ex-
pected to yield a unique set of Pareto solutions through gradient-
free searching.

The concept of latent crossover enables the integration of
evolutionary algorithms and machine learning methods. In our
future work, we plan to incorporate various types of evolution-
ary algorithms other than RCGAs, as well as VAE-based ad-
vanced machine learning methods into the proposed framework.
Additionally, to verify the efficacy of the proposed framework
on different optimization problems, we consider developing a
systematic formulation method for the low-fidelity optimization
problem and plan to apply it to other multimodal problems in-
volving strongly nonlinear physical phenomena.
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