
Qiuyi Chen1
Department of Mechanical Engineering,

University of Maryland,
College Park, MD 20742

e-mail: qchen88@umd.edu

Mark Fuge
Department of Mechanical Engineering,

University of Maryland,
College Park, MD 20742
e-mail: fuge@umd.edu

Characterizing Designs
Via Isometric Embeddings:
Applications to Airfoil
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Many design problems involve reasoning about points in high-dimensional space. A
common strategy is to first embed these high-dimensional points into a low-dimensional
latent space. We propose that a good embedding should be isometric—i.e., preserving
the geodesic distance between points on the data manifold in the latent space. However,
enforcing isometry is non-trivial for common neural embedding models such as autoenco-
ders. Moreover, while theoretically appealing, it is unclear to what extent is enforcing isom-
etry necessary for a given design analysis. This paper answers these questions by
constructing an isometric embedding via an isometric autoencoder, which we employ to
analyze an inverse airfoil design problem. Specifically, the paper describes how to train
an isometric autoencoder and demonstrates its usefulness compared to non-isometric auto-
encoders on the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry
is necessary for accurately discovering clusters through the latent space. We also show how
isometric autoencoders can uncover pathologies in typical gradient-based shape optimiza-
tion solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an
over-reliance of the gradient solver on the angle of attack. Overall, this paper motivates
the use of isometry constraints in neural embedding models, particularly in cases where
researchers or designers intend to use distance-based analysis measures to analyze
designs within the latent space. While this work focuses on airfoil design as an illustrative
example, it applies to any domain where analyzing isometric design or data embeddings
would be useful. [DOI: 10.1115/1.4063363]
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1 Introduction
Analyzing past design data via machine learning has opened up

new avenues for accelerating both human- and computer-generate
designs in several ways [1]. For instance, in works like Refs. [2–
7], researchers developed conditional inverse design models that
can generate new designs satisfying the performance requirements,
without going through time-consuming optimization. Other
researchers [8–12] have focused on unconditional generation of
designs, to either create more efficient shape parameterization func-
tions or to augment an existing dataset with high-quality designs.
Lastly, surrogate modeling methods have a long history using data-
driven models to predict and optimize a design’s performance so as
to limit the need for computationally intensive first-principles
solvers, such as finite element or finite volume solvers [13–17].

However, for all data-driven models researchers often need to
ensure a dataset’s quality by analyzing: how non-uniform it is;
whether the data are concentrated, multi-modal, or biased over
regions of data space; or whether the data points are noisy. Data
analysis tools such as clustering or computing density or topological
properties are typically used to characterize some of these factors,
yet the curse of dimensionality [18] undermines their use in high-
dimensional data space. Thus, practitioners usually first embed
the data into some low-dimensional latent space via a dimension
reduction method, and then conduct the analyses there instead
[19–21]. But, given the large number of existing embedding
methods, what properties do we need from the embedding to
make such latent analyses reasonable? Chen et al. [22] proposed
that for design data, we should care about the embedding’s preser-
vation of the geodesic distance, but that paper did not address the
question of how to actually construct such an embedding.
This paper answers that question by proposing the recently devel-

oped isometric autoencoder [23–25] based on Riemann geometry to
embed designs in a bidirectional and distance-preserving manner.
We demonstrate the isometric embedding’s necessity and practical-
ity via a latent space analysis of the airfoil inverse design problem.
Specifically, the paper provides the following contributions:
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(1) We describe how to produce a bidirectional isometric repre-
sentation with the isometric autoencoder. We apply this
architecture to both some pedagogical toy problems and
the real-world UIUC airfoil dataset2. These representations
preserve the geodesic distance on the UIUC airfoil manifold
in the form of the Euclidean distance in the latent space. We
show how to use this isometric low-dimensional embedding
as a proxy to investigate the quality of the UIUC dataset—
i.e., its non-uniformity and multi-modality—through the
lens of Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) .

(2) We illustrate why preserving the geodesic distance when
learning the design representation is necessary through a ped-
agogical counterexample incorporating flow-based models
and optimal transport. We show that the lack of isometricity
can lead to ambiguity when analyzing the UIUC airfoils’
latent embedding.

(3) We use the isometric airfoil representation to study the
quality and properties of the SU2 dataset of optimized air-
foils. This dataset was produced by a gradient-based (i.e.,
adjoint) SU2 CFD solver and was used to train a
CEBGAN (Condtiional Entropic Bézier Generative Adver-
sarial Network) for inverse airfoil design. We unearth a
pathology of the SU2 adjoint optimizer that it favors optimiz-
ing the angle of attack (AoA) more than the shape, and pro-
vides insights for future improvement. In addition, the
isometric embedding sheds light on the robustness of differ-
ent airfoils’ to various flow conditions, which has implica-
tions for work in robust design optimization.

2 Background and Related Work
Before introducing the isometric autoencoder and how we use it

for latent space cluster analysis, this section briefly reviews back-
ground and related work in clustering methods, how we define
metric functions (in both the Euclidean and Geodesic sense),
common latent space dimension reduction methods, and lastly
basic definitions of isometry that we use through the rest of the paper.

2.1 Clustering. A design dataset can be regarded as a collec-
tion of designs sampled from a probability distribution supported
by the set of valid designs. Among all the techniques that analyze
the data samples to characterize their underlying distributions, clus-
tering is a fundamental and popular one. It aims to assign the samples
to different clusters by a certain algorithm on an unsupervised basis,
insofar as the samples in the same cluster are more similar to each
other than to those in other clusters. Owing to its ability to taxonom-
ically describe the data distribution, clustering can highlight a
distribution’s non-uniformity and multi-modality, which makes it
especially suitable to design datasets, as they are in general non-
uniform and may contain several exemplary and timeless groups
of designs that engineers desire to extract and imitate.
Out of all the existing clustering schemes, density-based clustering

excels when the dataset consists of an unknown number of clusters of
arbitrary shapes. Empirically [26,27], it is an ideal choice when the
data distribution is supported by a set comprised of several
separated-by-closed-neighborhoods components and the dataset is
rich enough to delineate each, such that every disconnected compo-
nent can be accurately identified as a cluster. Because of these prop-
erties, density-based clustering is ideal for cases where topological
separation in data space among designs can indicate crucial design
variation. There exist many density-based clustering models,
among which DBSCAN [26] is probably the most celebrated one
thanks to its efficacy withstanding the test of time [28,29], yet it is
still not perfect [29,30] as a matter of course. Several successors
like OPTICS [31], DENCLUE [32], and HDBSCAN [33] have

since then being proposed to refine it. HDBSCAN [33] is a recent
density-based hierarchical innovation with many great improve-
ments, among which it in particular discards the annoying length
scale hyperparameter ε of DBSCAN, hence we shall use this
model in the later experiments for our convenience.
Despite clustering’s usefulness, there is one critical aspect upon

which any method’s success hinges: the chosen distance function
that describes similarity between points. Indeed, for clustering
schemes either connectivity-based like hierarchical clustering
[34], or centroid-based like k-means [35], or distribution-based
like Gaussian mixture [36], or density-based like DBSCAN [26],
selecting the distance function to quantify the resemblance
between data samples is inevitably the first step and the foundation
of the remaining process. As such, the distance function has out-
sized influence on the final result. Beyond clustering, this distance
function is also important to any analyses wherein the data samples
need to be juxtaposed to perceive their difference, such as in nearest
neighbor search [37], Determinantal point processes (DPP)
diversity quantification [38,39], etc., therefore it is worth being
discussed in depth next.

2.2 Distance Functions. The canonical distance function (or
metric) for an Euclidean space is the Euclidean distance. Despite
being the most intuitive metric for low-dimensional spaces—thus
usually being the default choice for clustering models—the Euclid-
ean distance is frequently challenged in high-dimensional spaces.
One well-known curse of dimensionality is the diminishing contrast
between the maximum and the minimum Lp distance from a random
query point to a series of random data points as the space dimen-
sionality increases [40,41]. This cripples the effectiveness of
distance-based algorithms like nearest neighbors or clustering on
high-dimensional data. Apart from suffering the contrast-loss,
Euclidean distance is also not even aware of the semantics of
many high-dimensional data (i.e., what object(s) each data repre-
sents). For example, an image of object A may appear closer in
Euclidean distance to an image of object B than to another image
representing the same object A but in a different pose [42]. One
plausible interpretation of this is that most high-dimensional data
only reside on low-dimensional manifolds [43], yet a Euclidean dis-
tance defined over the ambient space (i.e., the Euclidean space con-
taining that manifold) cannot take the shape and curvature of the
embedded data manifold into account, as illustrated in Fig. 1.

Fig. 1 Difference between Euclidean distance and geodesic dis-
tance when quantifying design differences2https://m-selig.ae.illinois.edu/ads.html
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Many alternative metrics have been proposed to overcome
these issues. As an example, it is suggested that employing Lp dis-
tance functions of smaller (even fractional) p can mitigate the
contrast-loss in high-dimensional spaces [41]. Nevertheless, just
like their L2 counterpart, these candidates are still unaware of the
geometry of the data manifold, not to mention it is dubious to
adopt them simply because of their better contrast, as Lp distance
functions with p< 1 are not even well-defined, violating the triangu-
lar inequality that a legitimate metric should obey. Mahalanobis dis-
tance is another popular option [42,44,45], which is equivalent to
performing a linear transformation over the entire ambient space
prior to measuring distances with the Euclidean distance, so that
when comparing points, different directions can be either empha-
sized or downplayed depending on their contribution to the seman-
tics. However, such linear transformation needs to be trained
beforehand by leveraging additional knowledge about the data’s
semantics, which is not always available. On top of that, linear
transformation could be too primitive to simplify complicated non-
linear data manifold structure.
A probably more proper and natural choice of distance function for

high-dimensional data is the geodesic distance (or Riemannian dis-
tance) [46,47] induced by the Euclidean metric over the data mani-
fold, provided that the data manifold resides on a connected
Riemann manifold—which can be intuitively called extended data
manifold—such that the geodesics on it are well-defined. This dis-
tance function adapts to the geometry of the data manifold because
it is defined as the length of the shortest path on it connecting two
given points, thereby it is designed exclusively for that particular
manifold and makes more sense both intuitively and empirically
[48–52]. The greatest downside of this metric is its general lack of
closed-form expression, since the evaluation of the geodesic length
involves integration over the irregular manifold. Luckily, we can to
some extent circumvent this issue by preserving this geodesic dis-
tance in a low-dimensional latent Euclidean space after establishing
an isometry between the data manifold and a latent set in the latent
space, so that the latent set serves as a proxy for that data manifold
equipped with geodesic distance and we can equivalently perform
geodesic-based analyses on it instead. To initiate this latent analysis,
we need to start with dimension reduction to construct a map between
the data space and the latent space at first.

2.3 Dimension Reduction. Dimension reduction aims to map
data points in the high-dimensional space into a low-dimensional
latent space while preserving some necessary information, such
that the validity of certain analyses performed in the latent space
can be ensured. For instance, t-SNE [20] retains the disconnected-
ness of the dataset [53], so that the disconnected subsets remain dis-
connected in the latent space. Isomap [54] preserves the graph
distance on the neighborhood graph as an approximation of the
true geodesic distance.
Generally, the data manifold is nonlinear, which often renders

linear dimension reduction methods like principal component anal-
ysis (PCA) and non-negative matrix factorization (NMF) futile
[54,55]. Out of all the nonlinear dimension reduction models, the
autoencoder [56] is special for its simple reconstruction-loss-based
formulation and the ability to not only map forward but also back-
ward from the latent space to the data space. This ability to trans-
form data bidirectionally is ideal for designs, as it can not only
help us analyze designs conveniently in a low-dimensional setting
—which is the focus of this paper—but also enable us to use its
backward mode as a design parameterization to synthesize novel
designs after we efficiently perform optimization or construct con-
ditional generative models in the low-dimensional latent space. In
addition, being a parametric model, once trained the autoencoder
can be immediately applied to unseen new designs to derive the cor-
responding latent codes without starting from scratch. This advan-
tage should compound as the dimensionality and scale of the
design problem grows. It is therefore worthwhile to model that
isometry for designs with the autoencoder rather than the other uni-
directional, non-parametric methods like Isomap.

Compared with its counterparts like Isomap [54], LLE [55],
UMAP [21], or diffusion map [57] that need to scrutinize each
data point’s neighborhood to infer the local manifold structure,
the autoencoder has a more straightforward formulation which
only needs us to globally minimize the reconstruction loss.
However, it is still a dimension reduction method that can preserve
a dataset’s topological properties. This is because it approximately
learns a topological embedding—which is a homeomorphism—
between the dataset in the high-dimensional data space and latent
set in the low-dimensional latent space, such that the original data-
set’s crucial topological properties like connectedness—which are
invariant under homeomorphism—are preserved on the latent set
[58]. Our claim about the autoencoder’s homeomorphicity is bol-
stered by the rationale that both the encoder e and the decoder g
are modeled by continuous neural networks, and the minimization
of the reconstruction loss Ex∼X‖g ◦ e(x) − x‖ encourages the com-
position g ○ e to be an identity function over the dataset X and
drives both g and e to be bijective between the dataset X and the
latent set e(X ) [59], which is the very definition of a topological
embedding [58].
However, preserving the topological properties alone is not

enough for clustering on the latent set, since there exists an infinite
number of latent sets that each has different pairwise distances but is
still homeomorphic to the same dataset (this non-uniqueness of
homeomorphism is why flow-based models [60–62] can approxi-
mate different distributions with a fixed latent distribution, as we
will see in Sec. 4.1.3). This may in consequence induce an infinite
number of results for latent clustering and lead to ambiguity. There-
fore, preserving a selected distance function in the data space is nec-
essary, and this brings us to the preservation of the aforementioned
geodesic distance on the data manifold.

2.4 Isometry. An isometry between two Riemann manifolds is
a locally isometric diffeomorphism (i.e., a smooth homeomor-
phism), which preserves the geodesic distances between points.
For simplicity, if we restrict this generic definition to our special
case where this map is modeled by an autoencoder, then based on
the discussions in Refs. [23–25], we say the autoencoder establishes
an isometry between a Riemann data manifold in the high-
dimensional data space and a Riemann latent manifold in the low-
dimensional latent space—provided that they are connected sets and
inherit their Riemann metrics from their Euclidean ambient spaces
respectively—if the autoencoder is

(1) A diffeomorphism: Both the encoder and the decoder are
modeled by smooth neural networks, and the autoencoder’s
reconstruction loss is also minimized to near zero over the
Riemann data manifold, creating a homeomorphism.

(2) Locally isometric: All singular values of the Jacobians of
both the decoder and the encoder need to be 1 at every
point over the Riemann manifolds. Intuitively, this means
the local linear transformation (i.e., the differential) does
not stretch or compress the input along any direction
tangent to the manifold.

On top of that, ideally we hope the latent space’s dimension is equal
to the latent manifold’s dimension and the latent manifold is a
convex set—which aligns its geodesic distance with the Euclidean
distance—such that the geodesic distance between any pair of
points on the data manifold equals the Euclidean distance
between their corresponding latent codes. However, this ideal
setting is not always encountered for the following reasons:

(1) The dataset (and thus the latent set) may not be connected.
Remember this is what motivates us to use HDBSCAN to
investigate the dataset’s topology. Intuitively, this means
there exist some intervals between these components that
are not regularized for the autoencoder, such that while the
distance within each component is preserved, these compo-
nents can be arbitrarily close to each other in the latent space.
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(2) The latent space’s dimension could be larger than the data-
set’s dimension. There are many causes for this issue. For
example, the dataset may not be a manifold, as it could be
not locally Euclidean somewhere. The dataset could also
be a manifold unable to be embedded in a space of the
same dimension, as will be discussed later. Moreover, the
dimension of the latent space needs to be determined before-
hand, but we may not be able to estimate it accurately.

(3) The latent set is not necessarily convex, as its shape is deter-
mined by the shape of the dataset through the isometry. In
addition, if the above dimension misalignment exists, the
nonlinearity of the latent set may also destroy its convexity.

All these issues suggest that we need to somehow extend the dataset
into a well-behaved connected Riemann manifold to establish that
isometry robustly. We introduce methods to do this next.

3 Methodology
This section covers the two primary methods that we use in this

paper’s later experiments: (1) the isometric autoencoder and (2) a
method for estimating the intrinsic dimension of the data manifold.

3.1 Isometric Autoencoder. Since the reconstruction loss
enforces homeomorphicity, and both the decoder and the encoder
are smooth models, to enforce isometry within an autoencoder we
only need to make the encoder and the decoder locally isometric.
We can accomplish this by having their Jacobians’ singular
values all equal to one over the dataset (or equivalently the latent
set). This is easier said than done, due to the substantial computa-
tional cost entailed in explicitly deriving the Jacobian’s singular
values, particularly in high-dimensional cases. Thus, instead of reg-
ularizing those singular values explicitly, researchers typically
impose the isometry constraint implicitly via random vectors
sampled uniformly from a unit sphere Sm−1 embedded in the m-D
latent space, such that ‖Jgv‖= 1 and ‖v⊤Je‖ = 1 for every
v ∈ S

m−1, where Jg and Je are the Jacobians of the decoder and
the encoder respectively. It can be verified that this leads to
unitary singular values [24]. More importantly, we can compute
the Jacobian-vector product (JVP) or vector-Jacobian product
(VJP) far more efficiently than the full Jacobian via modern pack-
ages like functorch and JAX, which can also invoke the optimal
auto-differentiation mode (forward mode for JVP and backward
mode for VJP) providing efficient backpropagation.
Enforcing isometry only over the dataset may not be enough, due

to the three problems mentioned in Sec. 2.4. To overcome these
issues, we employ the latent interpolation or mixup method
[23,63] to additionally enforce isometry over some interpolated
latent points. Specifically, these interpolated points are sampled uni-
formly from the lines connecting some random pairs of real latent
points (i.e., the corresponding latent points of real data samples).
This latent interpolation approximately samples points from the
convex hull of all real latent points, so that by enforcing isometry
over this extended convex latent set, we equivalently enforce isom-
etry over its image in the data space, which is a connected Riemann
manifold covering the dataset. This connected manifold can thus be
regarded as an extended data manifold that has a well-defined geo-
desic distance and a convex latent set. To make sure the extended
latent set is homeomorphic to the extended data manifold, we addi-
tionally minimize the cycle consistency loss [64] over the interpo-
lated latent points.
Altogether, the loss function of the isometric autoencoder con-

sists of four square terms:

L = Ex∼X , z∼e(X ), v∼Sm−1{[g ◦ e(x) − x]2 + β[e ◦ g(z) − z]2

+ λ[‖Jg(z) · v‖ − 1]2 + λ[‖v⊤ · Je(x)‖ − 1]2} (1)

where β and λ are weight coefficients for cycle consistency loss and
isometry regularization respectively, e(X ) is the extended latent set

consisting of the interpolated points, and the random vectors (x and
v) are sampled uniformly from their respective sets. To sample v
uniformly fromSm−1, we can take advantage of the radial symmetry
of the unit Gaussian distribution by simply normalizing the vectors
sampled from it.

3.2 Intrinsic Dimension Estimation. To construct the autoen-
coder, we must first determine the latent space dimension (m). This
dimension is vital for two reasons. On one hand, if the dataset consti-
tutes a manifold—which is locally Euclidean of certain dimension—
and we attempt to fit an autoencoder whose latent space is lower than
this intrinsic dimension, the autoencoder will never establish a
homeomorphism between the dataset and the latent set due to the
topological invariance of dimension [65]. This would cause the auto-
encoder to map different data points to the same latent point, making
the encoder no longer injective. This “data collapse” is detrimental to
latent clustering for the following reasons. First, the autoencoder is
thereby no longer isometric, which makes the intrinsic latent space
metric unreliable for clustering. In addition, although the connected-
ness of the dataset is still preserved on the latent set thanks to the
encoder’s continuity, the disconnectedness is not guaranteed to
remain; this means that multiple disconnected clusters in the data
space may be merged into a single connected one in the latent
space. This merging would clearly mislead any clustering algorithm.
While some may argue that this collapse is not always unfortunate
since some trivial data dimensions might be eliminated in our favor
in the latent space, this removal is out of our control and it is
unwise to rely on luck. On the other hand, avoiding this collapse
problem by setting the latent space dimension higher than absolutely
necessary creates its own problems: our whole reason for conducting
dimension reduction in the first place is to reduce clustering problems
that occur in high-dimensional spaces and make isometry regulariza-
tion more efficient.
To this end, we employ the maximum likelihood estimation

(MLE) [66] with bias correction [67] as the intrinsic dimension
estimator, which performed well in our previous work [68].
In brief, MLE presumes locally constant data density and
Poisson-distributed number of neighbors around each point.
Under that model, the likelihood maximization leads to the local
estimate

m̂k(x) =
1

k − 1

∑k−1
j=1

log
Tk(x)
Tj(x)

[ ]−1

(2)

where k is the pre-selected number of neighbors for each evaluation
and Tj(x) is the Euclidean distance between x and its jth nearest
neighbor. The debiased global estimator [67] summarizing these
local results is

�mk =
1
n

∑n
i=1

m̂k(xi)
−1

[ ]−1

=
1

n(k − 1)

∑n
i=1

∑k−1
j=1

log
Tk(xi)
Tj(xi)

[ ]−1

(3)

More details about improving its precision can be found in our pre-
vious work [68].
Even when we estimate the data manifold’s dimension d accu-

rately, it is not necessarily the proper number for the latent dimension,
because we cannot always embed some manifolds of a given dimen-
sion into an ambient Euclidean space of the same dimension. The
Klein bottle is a well-known example—this two-manifold can only
embed successfully in at-least-4D Euclidean spaces. Luckily, the
Whitney embedding theorem [65] suggests that to obtain a homeo-
morphic autoencoder we can upper bound the latent dimension by
2d. Therefore, a practical way to attain the optimal latent dimension
is to incrementally increase it from d all the way to 2d until the final
reconstruction loss becomes marginal. For data manifolds that do not
have complexities or pathologies similar to the Klein bottle example,
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we would expect the result to be much closer to d than 2d, and thus
attainable in a few trial-and-error shots.

4 Experiments and Discussion
In this section, we use the airfoil designs as a concrete example to

demonstrate how the isometric autoencoder can help engineers
analyze high-dimensional designs intuitively in a low-dimensional
setting for different purposes. Overall, we first apply the isometric
autoencoder to the UIUC airfoil dataset to obtain a low-dimensional
isometric latent representation of the historical airfoil designs.
Then, we perform latent HDBSCAN to locate common past airfoil
designs—for pedagogical effect, we will disrupt the isometricity of
this autoencoder in one experiment to highlight the importance of
preserving distance for latent clustering. In the second half of our
experiments, we introduce and employ the resulting isometric auto-
encoder to derive the latent representation of a subset of airfoils opti-
mized by the SU2 suite under a large variety of boundary conditions.
We then use this isometric embedding to investigate how the airfoil
shape and angle of attack are related to different input conditions.

4.1 UIUC Airfoil Latent Clustering

4.1.1 Isometric Representation of UIUC Airfoils. To help gen-
erate smooth airfoil curves, we integrate the Bézier layer used in our
previous work [11] into the decoder as its output layer. Our decoder
and encoder also inherit their general architectures respectively
from the generator and discriminator in Ref. [11], since their com-
plexity was previously sufficient for this dataset. We set both β and
λ to 0.01 for the isometry regularization. We set the latent space
dimension to three, based on prior published experiments with the
UIUC dataset [68]. After constructing the autoencoder, we then
train it with an ADAM optimizer of learning rate 0.0001 for 6000
epochs with batch size 32 over the UIUC dataset consisting of
1528 airfoils. During each epoch, the autoencoder is trained 48
times over different shuffled mini-batches.
After training, the autoencoder achieves a reconstruction error

of approximately 5 × 10−5 and a cycle consistency loss around
9 × 10−4, while the isometry regularization errors of the decoder
and the encoder are around 8 × 10−5 and 4.5 × 10−3 respectively.
These results indicate that the isometric autoencoder does not sac-
rifice reconstruction error relative to the unregularized version.
We then use the isometric encoder to map all of the UIUC airfoils
into the latent space, and we use these encoded coordinates for the
following latent analyses. Figure 2(b) shows the 2D principal pro-
jection of this (3D) latent set.

4.1.2 Latent Clustering With HDBSCAN Using the Isometric
Autoencoder. At first, we perform HDBSCAN on the latent set

with both mpts and mclSize set to 5—namely the minimum number
of neighbors a given point should have to qualify as a core and
the minimum number of cores that a cluster should have. This
HDBSCAN configuration classifies <10% of the latent points as
noise and does not produce as many trivial tiny clusters, thus rea-
sonably grasping the overall structure of the dataset. Figure 2
shows that over 90% of airfoils in the UIUC dataset are considered
density-connected by HDBSCAN under this hyperparameter
setting and assigned to cluster #3, while there are only a few
(139) outliers left surrounding it (Fig. 2(b)). In other words, in
UIUC dataset there exists a dominant connected subset in which
the airfoils are densely distributed everywhere (otherwise they
would not become cores in HDBSCAN). This cluster can be
regarded as the group of “canonical” airfoil designs. The illustra-
tions in Figs. 2(c) and 2(d ) seem to testify to this claim, as subjec-
tively those noise airfoils have a higher variety of unusual shapes
than those in cluster #3, although this is a qualitative conjecture
on our part.
Despite its mechanical and systematic procedure, HDBSCAN is

still highly sensitive to varying mpts and mclSize, which can signifi-
cantly alter each point’s cluster assignments. For instance, when
we increase mpts and mclSize to 10 and 50 respectively to sift out
low density regions and small clusters more radically, we can get
a different result as shown in Fig. 3. Due to the current higher stan-
dard for what constitutes a cluster, only a few (four) regions of
higher density in the previous cluster #3 now qualify as clusters.
In that sense, we can regard these four as the most typical groups
of airfoils among all canonical airfoil designs. We can plot the
mass centers of these clusters as the representatives of them, as
shown in Fig. 3(c).

4.1.3 What Happens to Latent Clustering When We Destroy
Isometry? It may not be easy to appreciate the importance of isom-
etry regularization without a contrast, so here we purposefully sab-
otage the airfoil autoencoder’s isometricity to demonstrate how its
absence may lead to distortion of the latent set and hence to a mis-
leading clustering result. Specifically, our overall “trick” below will
be to enforce the exactly same autoencoder reconstruction loss, but
selectively destroy the latent space’s isometricity using a tunable
bijective distortion that allows us to increasingly “break” only the
isometricity between the design and latent spaces.
To do this in practice, we first unlock the autoencoder’s isometri-

city by attaching a flow-based model like RealNVP [61] to its latent
space. Specifically, let g and e be the decoder and encoder of the
isometric airfoil autoencoder and f be the RealNVP, then construct
a new latent set with f ◦ e(X ), where X denotes the UIUC dataset.
We can thereby regard e′:= f ○ e and g′:= g ○ f−1 as the new pair of
encoder and decoder between the UIUC dataset and the new latent
set, where f−1 can be readily retrieved given that f is a

Fig. 2 Result of latent HDBSCAN on UIUC airfoil dataset, withmpts=mclSize=5. Here (a) shows the amount of airfoils assigned to
each cluster by HDBSCAN and (b) illustrates the spatial distribution of the airfoils in each cluster in the 2D space spanned by the
top-2 principal components of the latent codes, with each point marked according to its corresponding cluster in (a). All plots
hereafter, unless otherwise specified, have the same configuration: (a) airfoil distribution (#-1 for noise), (b) PCA of isometric
latent set, (c) airfoils regarded as noise (#-1), and (d) airfoils in cluster #3.
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diffeomorphism between the old and new latent spaces by construc-
tion. Therefore, the reconstruction loss does not change at all for
any flow f, as ‖g′ ○ e′(x)− x‖= ‖g ○ f−1 ○ f ○ e− x‖= ‖g ○ e(x)−
x‖. In other words, through this new autoencoder we get a new
latent set that is also homeomorphic to the dataset (and thus to
the old isometric latent set), but we can train f while fixing e and
g to tamper with its isometricity.
Next we show this unlocked autoencoder can obtain a latent set

(as shown in Fig. 4) dramatically different from the isometric one
in Fig. 2(b). We start by constructing a 3D Gaussian mixture
target distribution pt(z) of three components centered at [1, 0, 0],
[0, 1, 0], and [0, 0, 1] respectively, each having an isotropic standard
deviation equal to 0.1. Then we drive the empirical distribution pf(z)
of the new latent codes e′(X ) to pt by only training f and leaving g
and e fixed. Since we do not know the probability density function
over the isometric latent set e(X ), there is no way to train f via
log-likelihood maximization, so we achieve this instead by mini-
mizing the Sinkhorn divergence between pt and pf. More informa-
tion about this method can be found in Ref. [69]. This encourages
f to transform the old isometric latent set into a new one with
most of its points concentrating around [1, 0, 0], [0, 1, 0], and [0,
0, 1], and thus may form three big clusters instead of one. If our
claim is true that the lack of isometricity can lead to distortion,
this three-cluster latent set should be attainable as long as f has
enough complexity.
Figure 4 shows the clustering result of the non-isometric latent set

after training. It now consists of three major clusters (#7, #8, #13)
corresponding to the three Gaussian components of pt. This
stands in stark contrast to the single giant cluster in Fig. 2(b),
despite the two models having identical reconstruction error, and

exemplifies the ambiguity problem mentioned in Sec. 2.3. In
other words, we cannot use reconstruction error alone to know
that the resulting latent space distances preserve isometry, and the
isometric autoencoder provides a mean to regularize this directly.
While in real applications, an autoencoder may not distort the data-
set’s distance and topology quite as severely as in our extreme
example, naïve models have no protection against it. As such, it
is therefore always worthwhile to switch on the isometry regulariza-
tion when doing latent analyses relying on distance functions.

4.2 Latent Shape Analysis of SU2 Airfoil Optimization. As
mentioned earlier in Sec. 2.3, one great advantage of the autoenco-
der over many other non-parameterized dimension reduction
methods is its ability to perform amortized inference, i.e., it can
immediately process unseen data samples without retraining. In
the following experiments, we exploit this advantage to analyze
the SU2 airfoil dataset [5] consisting of 1245 airfoil-AoA pairs
that are optimized under a variety of boundary conditions by the
SU2 CFD toolset. Specifically, we postulate that these optimized
airfoil shapes still reside on the UIUC airfoil manifold, and apply
the pre-trained UIUC airfoil autoencoder directly on the SU2
dataset (shapes only, without AoAs) to derive its isometric latent
representation for the following latent analyses.

4.2.1 Latent Clustering of Optimized Airfoils. We perform
HDBSCAN with mpts= 10 and mclSize= 30 on the latent set of
SU2 airfoils first and illustrate its result in Fig. 5. Compared with
the 1528 UIUC airfoils that cover a large area and comprise a
giant cluster, the 1245 SU2 airfoils only occupy a few small
regions and form five clusters, as we can see in Fig. 5(a). This
higher regional density is the prime reason why in this case we
do not reuse the previous mpts=mclSize= 5 setting for Fig. 2, as oth-
erwise it will produce over 30 tiny clusters and leave about 25% air-
foils categorized as noise, which is not reasonable.
The SU2 airfoils’ distinctive regional concentration probably

stems from the way they were created. Chen et al. [5] observed
that the gradient-based airfoil adjoint optimization often arrived at
sub-optimal local optima. Consequently, for each input condition
they performed eight restarts of the adjoint optimization by select-
ing a diverse set of starting airfoils sampled from BézierGAN
approximating the UIUC airfoil distribution. In Ref. [5], the final
training set included only the highest efficiency final design from
these eight optimization trials. In practice, in many cases the SU2
optimizer found that altering only the AoA was sufficient to find
the most efficiency design, compared to modifying the airfoil
shape. As such, we would expect to find dense clusters of initial
shapes (in the latent space) for the cases where the optimized
design only modified the AoA. We shall verify if this is true next.

4.2.2 How Much Do Airfoils Morph in Optimization? To
investigate the airfoil shape’s degree of variation during

Fig. 3 Result of latent HDBSCAN on UIUC airfoil dataset, with mpts=10 and mclSize=50: (a) airfoil distribution (#-1 for noise),
(b) PCA of isometric latent set, and (c) airfoil representatives

Fig. 4 PCA of and HDBSCAN on non-isometric latent set, with
mpts=mclSize=5
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optimization, especially in comparison to that of the AoA, we
perform PCA on the Cartesian product of the normalized 3D
latent code and normalized AoA—namely their 4D concatenation.
To avoid distortion of the latent code, when normalizing/standard-
izing the code we use the standard deviation across all three latent
dimensions as the scaling factor, instead of scaling it
dimension-wisely after mean centering. By doing this, we can
make sure the normalized latent set is still isometric to the dataset
up to a scale factor [23], so that some potentially trivial latent
dimensions will not be emphasized relative to the principal ones
after normalization.
The new PCA result is plotted in Fig. 6, where each point is

marked according to the cluster found earlier plotted in Fig. 5. In
contrast to Fig. 5(a), the introduction of AoA in PCA induces a
reorientation that reveals each cluster’s linear pattern along the
AoA direction (which is illustrated by the dashed line in Fig. 6).
There are two naïve takeaways from this graph, if we (for now)
ignore some technical caveats and presume that smaller variation
in the direction perpendicular to the AoA direction indicates
smaller change in shape:

(1) In general, the SU2 adjoint optimizer tends to optimize the
airfoil’s lift-drag efficiency for different input conditions—
Re, Ma, and lift coefficient—more by adjusting its AoA
than by morphing its shape, given that each cluster’s varia-
tion along the AoA direction is more substantial than that
along the perpendicular direction.

(2) Not all airfoils are created equal. We can notice that the
airfoil shapes in clusters #0 and #1 have much smaller vari-
ation compared with the ones in clusters #2, #3, and #4. If it

is true that almost all airfoils in each cluster are optimized
from the same initial design from among the provided
eight restarts,3 then this suggests some of the eight initial air-
foils are better starting shapes (i.e., lie close to the basin of
the optima) under certain ranges of boundary conditions
compared to others, leading the SU2 optimizer to only
need to adjust the AoA to improve efficiency. The over-
whelming number of airfoils in cluster #1 (Fig. 5(b)) also
reflects this inequality, suggesting that the initial design
that, when optimized, yielded the shapes in cluster #1 is
not just optimal for some conditions, but rather broadly

Fig. 5 Result of latent HDBSCAN on SU2 airfoil dataset, with
mpts=10 and mclSize=30: (a) PCA of SU2 dataset’s isometric
latent set and (b) SU2 airfoil distribution (#-1 for noise)

Fig. 6 2D principal projection of the Cartesian product of airfoil
latent code×AoA

Fig. 7 Airfoils in different clusters and their initial designs:
(a) cluster #0, (b) initial design #0, (c) cluster #1, (d) initial
design #1, (e) cluster #2, (f) initial design #2, (g) cluster #3,
(h) initial designs #3, (i) cluster #4, (j) initial design #4,
(k) cluster #-1 (Noise), and (l) remaining initial designs

3This is likely considering how separated these clusters are away from one another
in the latent space. We will also see this visually later in Fig. 7.

Journal of Mechanical Design MAY 2024, Vol. 146 / 051702-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/5/051702/7060864/m
d_146_5_051702.pdf by guest on 23 April 2024



optimal under a wide range of boundary conditions, com-
pared with the others.

Despite seeming plausible, these two takeaways need to be taken
with a grain of salt, as there are several caveats that may undermine
their validity:

(1) The high variation along the AoA direction in Fig. 6 may not
be attributed to the AoA alone, as some variations in the
latent code may also have been projected along it under
PCA. However, we think it is still safe to regard AoA as
the dominant contributor to this direction’s variation and
ignore the airfoil shape’s influence, as otherwise we should
have already seen a similar linear pattern in Fig. 5(a), i.e.,
the PCA without AoA.

(2) The distance variation among the latent codes shown in
Fig. 6 may not be directly comparable to variations in
AoA. For instance, when comparing data A and data B, we
may come up with a Mahalanobis distance function for A
that scales up A’s space arbitrarily large, such that the varia-
tion of data A measured by it is also arbitrarily large. It is then
pointless to compare this variation with a normal Euclidean-
based one of data B. In our case, the variations of shape and
AoA are based on the Euclidean distances defined on the nor-
malized latent space and normalized AoA space respectively.
Because the latent set is isometric to the dataset, the variation
of shape is also equivalently based on the geodesic distance

on the shape manifold, up to the shape code’s normalization
factor.

(3) The previous caveat seems to not affect our second take-
away, because for that claim we only compare each cluster’s
shape variation (not including the AoA). The variation of
shape, as mentioned above, is based on the geodesic distance
between shapes. However, despite its awareness of the data
manifold’s geometry, whether or not the geodesic distance
is reasonable for comparing shapes is still an open question.
For instance, it might actually not be aligned with a human’s
“perceptual metric” [70], such that a large difference between
airfoils in terms of the geodesic distance only corresponds to
a small visual difference, and vice versa. In addition, some-
times a subtle visual change in shape may lead to a huge
shift in the design’s performance. Since the design’s perfor-
mance is what we care about ultimately, it might be more rea-
sonable to compare shapes by measuring their difference in
performance.

These concerns, together with our above takeaways, require future
research. Nonetheless, it could be informative to investigate the
third caveat tentatively by illustrating all airfoil shapes in each
cluster. This allows us to see how varied they are visually and
whether the degrees of visual variation agree with the Euclidean/geo-
desic based variations in Fig. 6. We can then assess, albeit qualita-
tively, if the geodesic distance agrees with our “perceptual metric.”
To do this, for each cluster we superpose all its airfoils and plot

them altogether on the left of Fig. 7. Visually, we see that clusters

Fig. 8 Distribution of shape clusters with respect to Mach number, Reynolds number, and lift
coefficient
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#0 and #1 (Figs. 7(a) and 7(c)) have much lower variation in their
airfoil shapes compared to clusters #2–#4 (Figs. 7(e), 7(g), and
7(i)). This agrees well with the variation difference shown in
Fig. 6. This suggests the geodesic distance is at least a reasonable
choice for evaluating the visual difference between shapes.
On the right side of Fig. 7, we also plot the five initial airfoil
designs—handpicked out of the eight restart candidates—that
look the most similar to the airfoils in different clusters. We can
see that for all clusters (maybe except #3), the optimized airfoils
look almost identical to their corresponding initial designs, which
testifies to both of our takeaways.

4.2.3 Relationships Between Airfoil Shape, Angle of Attack,
and Boundary Condition. So far we have only analyzed the
shape-AoA configurations of SU2 airfoils, without taking any
boundary conditions into account. One potential hypothesis for
the clustering of shapes in the latent space could be that each
cluster corresponds to some identifiable change in the boundary
conditions—i.e., that certain clusters arise naturally when optimiz-
ing a design within a range of conditions, and that the optimal
cluster switches at some flow regime.
To investigate this hypothesis, we demonstrate the conditional

distribution of airfoil shapes with respect to the three boundary con-
dition parameters—Reynolds number, Mach number, and lift coef-
ficient. Figure 8 scatter plots all the boundary conditions in the SU2
dataset, with each point marked according to its corresponding
shape’s cluster. We observe several features from this plot:

(1) There is a conspicuous laminated pattern along the Mach
number dimension (bottom left and bottom right), which
divides this dimension into five distinctive segments. Each
segment is prominently occupied by the airfoil shapes in a
single cluster. As the Mach number incrementally increases
from ∼0.2 to ∼0.8, the optimal airfoil shape morphs from
cluster to cluster following the order #0 → #1 → #2 → #4

→ #3. Not only that, this morphing is also in general mono-
tonic or injective, namely no airfoil cluster appears domi-
nantly more than once in different Mach number segments.

(2) In contrast, the optimal shape is in general independent of
Reynolds number and lift coefficient, as least within the
SU2 dataset’s cubic boundary condition regime. This is
reflected in both how uniformly the shape clusters distribute
in the Re–Lift subspace (top right), and how perpendicular
the lamination boundaries are to the Ma dimension (bottom
left and bottom right).

Fig. 9 Distribution of AoA with respect to Mach number, Reynolds number, and lift coefficient

Fig. 10 Distribution of AoA with respect to clusters
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(3) Again, not all airfoils are created equal. For example, cluster
#1 dominates the wide flow velocity regime roughly between
Mach 0.3 and 0.55, whereas cluster #4 concentrates around
Ma 0.7, at the boundary between clusters #2 and #3.

Overall, in aerodynamic design optimization, the airfoil shape
morphs primarily to adapt to its working velocity. This is consistent
with existing design practice of customizing aerodynamic surfaces
to different speed regimes (e.g., Boeing 737 versus Concorde). Not
only that, as expected, an airfoil shape that is optimal within a given
speed regime is not likely to be optimal within another. Moreover,
different airfoil shapes also have different sensitivities to velocity,
as some are adaptable to a wider range of speeds than others. It is
intriguing that Fig. 8 found this known behavior in an unsupervised
manner only through analyzing the learned latent space rather than
being directly trained on the boundary conditions.
Figure 9 demonstrates whether this same pattern exists for

changes in the AoA, with each point marked according to its
AoA value. This graph shows that, in general, the optimal AoA is
correlated not only with lift coefficient but also with Mach
number. The latter, however, might be considerably affected by
the shape lamination along the Ma dimension, as each cluster of
shapes may have a distinctive optimal range of AoAs that couples
with it, such that the AoA–Ma correlation mainly results from
this cluster-wise coupling. Indeed, we can notice this coupling
between shape cluster and AoA in Fig. 10.
To avoid the influence of this shape lamination, we instead

study how AoA varies with respect to Ma, Re, and lift with

the airfoil shape fixed. Specifically, we evaluate the Pearson cor-
relation coefficients (PCC) between AoA and the three condi-
tions in each cluster (recall that the shapes in each cluster
look very similar, thus may be roughly regarded as fixed).
The results are demonstrated in Fig. 11, which reveals AoA’s
moderate negative correlation with Mach number (PCC on
average −0.57, weighted by cluster size), high positive correla-
tion with lift coefficient (PCC on average 0.83, likewise), and
negligible correlation with Reynolds number (PCC on average
0.03, likewise).

5 Limitations
The isometric embedding method has several limitations worth

mentioning. First, we use the latent interpolation method described
in Sec. 3.1 to tackle the potential dataset “pathologies” as discussed
in Sec. 2.4. It should be noted that with this interpolation technique
employed, we are preserving the geodesic distance on the extended
data manifold instead of that on the original data manifold, which
does not necessarily agree with each other. For instance, imagine
we have a circle dataset S1 on a curved surface (2D manifold)
embedded in a high-dimensional data space. If we train an isometric
autoencoder of 2D latent space for this dataset (as this is the least
dimensional Euclidean space for embedding S

1), we are learning
the geodesic distance on the curved surface rather than that on the
circle, so the shortest path connecting two given points on the
circle falls outside the circle. Nevertheless, this distance is supposedly

Fig. 11 Pearson correlations between AoA and boundary conditions in different clusters: (a) AoA—Ma, (b) AoA—Re, and
(c) AoA—lift
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still better than the Euclidean distance in the data space that takes no
geometry into account.
In addition, despite the autoencoder’s ability to do amortized

inference on new unseen data samples, it may not reconstruct
them well, which means the new samples and their latent set may
not be homeomorphic to each other. This could undermine the
validity of latent analyses relying on the dataset’s topological prop-
erties. To guarantee that homeomorphicity, users need to update the
autoencoder’s parameters by retraining it over the new data samples
to reduce the reconstruction error, which should not take long for a
pre-trained model. It should be noted that a higher reconstruction
loss over the new data samples does not necessarily mean the
new data samples’ latent set is not suitable for latent analysis. It
could be the case that the encoder is still approximately an
isometric topological embedding over the new data samples but
the decoder’s image is not aligned with the new samples.

6 Conclusions and Future Work
In this paper, we employed the isometric autoencoder to learn an

isometric representation of the airfoil designs that preserve the
geodesic distance. Then we performed distance-based analyses
such as clustering in the isometric latent space to study different
airfoil dataset’s characteristics and complexities, while investigat-
ing the necessity and validity of preserving the geodesic distance
in the latent space.
As to the preservation of the geodesic distance, we found in Sec

4.1.3 that without it the latent set produced by the autoencoder is
at risk of comprising an arbitrary number of clusters, which may
mislead engineers’ interpretation of the design distribution. It is
therefore necessary to impart isometricity to the autoencoder
when analyzing data in its latent space. We also verified that
the geodesic distance agrees well with our visual perception
when it comes to detecting shape variation (at least for the
airfoils, Sec. 4.2.2), hence it is reasonable to preserve it for
shape analysis.
Through the lens of the isometric autoencoder and HDBSCAN

clustering, we found that compared to the high-quality and
diverse UIUC dataset, the SU2 dataset of optimized airfoils has
far less variation in its airfoil shapes. This may be blamed on two
culprits. First, when optimizing the airfoil’s L/D efficiency, the
SU2 adjoint optimizer prefers adjusting the AoA to morphing the
airfoil shape, probably because this is more effective in increasing
the L/D ratio in terms of the adjoint gradient (specifically, the
L/D objective’s gradient with respect to the AoA may have much
larger norm than that with respect to the airfoil spline’s control
parameters). Second, when creating the SU2 dataset with the SU2
optimizer, for each boundary condition we only performed eight
restarts from the eight candidate airfoils and kept only the best
final design. This, paired with the first issue, leads to the lack of
diversity in the SU2 dataset. A future way to improve the quality
of the SU2 dataset would be to either introduce more candidate air-
foils or replace the current adjoint-based optimizer.
Despite the SU2 dataset’s diversity issue, analyzing it in the iso-

metric latent space still provides many insights into the conditional
distribution of optimized airfoils. It shows that the cruising speed is
the primary factor in the design of airfoil shapes, and not all airfoil
shapes are created equal, as some can work optimally in a broader
range of speed. In addition, an airfoil shape that works optimally in
one speed regime is not likely to do so in another—in other words, it
is unlikely to find an airfoil that is universally optimal at every
speed. Moreover, when the airfoil shape is determined, if we
want to increase or maintain its lift coefficient while the speed
goes down, the airfoil should pitch up. In conjunction, these two
results suggest the condition distribution p(shape, AoA|Ma, Re,
lift) that the inverse airfoil design models in Ref. [5] tried to
capture might be factorized and simplified into p(AoA|lift, Ma,
shape) · p(shape|Ma). Although the insights on this specific
domain are already known from past human efforts in airfoil

design, what is unique is that the proposed Isometric Autoencoder
uncovered these without explicitly being trained to do so, and
that this technique can be applied to many other domains. This dem-
onstrates the value of constructing isometry via Isometric AEs to
new, more complex problems. We are investigating more compli-
cated, high-dimensional design problems as one avenue of future
work, and expecting more meticulous research on the sensitivity
of the autoencoder and clustering method’s hyperparameters.
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