
Jiaxin Wu
Department of Industrial and Enterprise

Systems Engineering,
University of Illinois at Urbana-Champaign,

Urbana, IL 61801
e-mail: jiaxinw3@illinois.edu

Pingfeng Wang1
Mem. ASME

Associate Professor
Department of Industrial and Enterprise

Systems Engineering,
University of Illinois at Urbana-Champaign,

Urbana, IL 61801
e-mail: pingfeng@illinois.edu

Generative Design for Resilience
of Interdependent Network
Systems
Interconnected complex systems usually undergo disruptions due to internal uncertainties
and external negative impacts such as those caused by harsh operating environments or
regional natural disaster events. To maintain the operation of interconnected network
systems under both internal and external challenges, design for resilience research has
been conducted from both enhancing the reliability of the system through better designs
and improving the failure recovery capabilities. As for enhancing the designs, challenges
have arisen for designing a robust system due to the increasing scale of modern systems
and the complicated underlying physical constraints. To tackle these challenges and
design a resilient system efficiently, this study presents a generative design method that uti-
lizes graph learning algorithms. The generative design framework contains a performance
estimator and a candidate design generator. The generator can intelligently mine good prop-
erties from existing systems and output new designs that meet predefined performance crite-
ria while the estimator can efficiently predict the performance of the generated design for a
fast iterative learning process. Case studies results based on synthetic supply chain networks
and power systems from the IEEE dataset have illustrated the applicability of the developed
method for designing resilient interdependent network systems. [DOI: 10.1115/1.4056078]
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1 Introduction
With the increases in both scale and complexity, interdependent

critical infrastructures (ICIs), such as power systems or transporta-
tion networks, become more vulnerable to disruptive events. And
natural disasters impose great negative impacts on the system reli-
ability, e.g., a winter storm and associated cold waves led to a
large-scale blackout event that affected more than five million
people in Feb. 2021 in Texas. Such vulnerability, therefore,
drives the research efforts that could lead to robust and resilient
ICIs. For instance, how to efficiently design a large-scale system
that can resist potential external disruptions or how can
the decision-maker evaluate the uncertain dynamic behavior of
the ICI undergoing different disruptive events? To quantify the
system’s performance during disruption or to comprehend the
system’s capability toward uncertain disruptive scenarios, research-
ers have adopted the term “resilience” from the ecology field [1].
Different from the terminology of system reliability, in which the
time-dependent degraded system performance and the possibility
of failure are studied, the resilience metric is utilized to complement
the analysis of real-time system behavior. Based on the U.S. Depart-
ment of Defense report, a resilient ICI should not only withstand the
impacts of disruptive events but also need to acquire the capability
of self-healing from damages [2]. Thus, to realize a resilient ICI
through design or operational management strategies, the stake-
holders need to tackle challenges in three folds: (1) how should
the system proactively detect the occurrence of abnormalities with
the possible external or internal disruptions; (2) how large is the
bandwidth of the ICI for withstanding adversarial impacts; and
(3) how quick the ICI can self-recover to its nominal state [3].

Motivated by the challenges from those three aspects, different
frameworks have been proposed to help the ICI establish self-
healing capability after system disruptions, therefore, achieving
failure resilience. Here, we categorize the research efforts about
engineering resilience based on the temporal stages of the proposed
frameworks, i.e., before and after the disruptions. During the post-
disruption stage, several real-time operational frameworks have
been proposed to guide how the system should behave after disrup-
tive events. For instance, researchers try to attain a resilient opera-
tional framework by scheduling optimal repair tasks under
uncertainties [4–6] as well as repair resources [7], forming self-
sustainable microgrids [8–10] and guided recovery through
control strategies [11,12]. All aforementioned studies focus on
solving the optimal decisions of how to utilize the existing
resources or back-ups to recover the ICI, on the promise that
setup a contingency plan such as network reconfiguration before-
hand. In other words, during the post-disruption stage, the self-
recovery capability is realized in two steps: appropriate emergency
response, e.g., system reconfiguration, followed by performing
optimal restorations.
Although comprehensive post-disruption frameworks have been

proposed to guide how a system should behave after failure events,
methodologies for proactively improving the system resilience or
quantifying the resilience level of the ICIs are still unknown. And
without an appropriate pre-disruption design/planning framework,
the stakeholders need to frequently apply the aforementioned con-
tingency plans to ensure system nominal performance, which
leads to a more significant cost for the resilience enhancement.
As a result, it is required to study suitable strategies to ensure
system resilience even during the planning stage and to ease the
necessity of adopting post-disruption control efforts.
To improve the system resilience and thus achieve system oper-

ations with better quality, however, current engineering resilience
design research has been focusing on proposing ad hoc models.
For instance, researchers have proposed different system modeling
and analysis methods to quantify and analyze the resilience level of
complex engineering systems, e.g., power distribution systems and
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supply chain networks, undergoing a disruptive event during the
pre-disruption stage [13,14]. Besides, various approaches based
on mathematical programming models are proposed to solve the
best design strategies for ICIs under different operating scenarios
[15,16]. Furthermore, probabilistic approaches such as the Bayesian
network have been adopted to analyze and quantify the overall
system resilience with the presence of disruptions [17,18]. All
aforementioned researches have demonstrated their capabilities of
quantifying the system resilience and thus finding the best design
of the system, e.g., expanding the existing ICI or solving the best
layout for a new system. Yet existing methods have their draw-
backs: either the model is ad hoc so that the generalization is not
straightforward or the system models are simplified to have a trac-
table problem. For example, many optimization-based approaches
have assumptions for the underlining physical constraints to
derive a solvable model for optimum. Or probabilistic approaches
only consider systems with around 30 components to simplify the
solving process. As a result, those drawbacks limit the applicability
of the existing methods on realistic large-scale ICIs.
To further complicate the pre-disruption design problems for

ICIs, the system usually consists of heterogeneous components for
satisfying the various needs in the same system. However, these dif-
ferent components add more constraints for solving the optimal
design and make the decision-maker use ad hoc models to evaluate
different online scenarios. Moreover, ICIs are usually discrete
systems with up to tens of thousands of nodes and edges. Such a
highly combinatorial system is nearly impossible to find the best
design, without the help of intelligent methods. Thus, in this study,
we focus on proposing a robust and intelligent generative framework
to realize the design for ICIs that optimizes the resilience level.
The proposed generative design framework for ICIs is a model-

free, data-driven method. It utilizes the graph learning algorithm
to reconstruct candidate designs based on the input dataset of real-
world ICIs. As a result, there is no need to make any assumptions
about the ICIs to simplify the system operation constraints. Also,
the optimal design does not rely on any specific mathematical
model of the ICI. That is, the generative approach can learn the
insights from the existing ICIs directly. And throughout the iterative
training process, the generated candidates can be optimized towards
predefined performance criteria, i.e., the system resilience level. As
shown in Fig. 1, the framework includes two major components—
the generator and the estimator. The design generator is a variational
autoencoder (VAE) that directly outputs feasible designs for the
ICI, while the estimator is pretrained to predict the performance
of the candidate design efficiently. And an iterative process that
blends the generated designs into the training dataset closes the
gap of “target” driven generation to bias the generator towards
outputting samples with high resilience. Finally, adequate
post-processing step including more expensive post-disruption
simulations pinpoints the best system design.
The contributions of this work are in two aspects: (1) to the

authors’ best knowledge, there is no “target” (resilience) driven gen-
erative algorithm for interconnected systems yet. In the machine
learning community, various algorithms, such as graph recurrent

neural network [19], graph recurrent attention network [20], and
graph variational autoencoder (GVAE) [21], have been proposed
to generate synthetic graph/discrete structures. And with the help
of the graph neural network model, an estimator can be constructed
to determine the resilience level of an ICI automatically. Combined
with the generative part, the estimator further guides the generation
process. (2) It is the first time adopting graph generation algorithms
to real-world network systems with rich physical information. A
physical system, for instance, the power grid, has much more com-
plicated operational constraints than a social network or molecular
structure. Those synthetic systems are the main applications of the
generative algorithms proposed in the machine learning field. Thus,
how to properly address the physical constraints and information
when applying the graph algorithm to ICIs remains as a crucial
challenge.
The rest of the paper is organized as follows: Sec. 3 explains the

modeling of the design generator, and Sec. 4 presents the formula-
tion of the design estimator in detail. Section 5 discusses the post-
processing simulation step for re-evaluating the designs with
more expensive metrics. A case study based on the power system
design is used to illustrate the applicability of the proposed frame-
work in Sec. 6. Section 7 concludes the study with brief discussions
on the effectiveness of the developed design methodology.

2 Modeling of ICIs and System Resilience
In this study, the ICI is modeled as graphs to indicate the interde-

pendence and inherent network structure of the system. Taking the
commodity distribution system as an example, the warehouse,
transportation hubs, or the final destinations can be modeled as
nodes {i|i∈V}. And the distribution paths are the edges {ij|ij ∈ E}
between different nodes. Thus, the overall ICI is denoted as a
graph G : = (V, E) as shown in Fig. 2. Other than the topological
information illustrated in the figure, physical systems usually
carry much more signals. Taking the power grid as an example,
each node of the graph can have a specific level of operating volt-
ages, frequencies, and magnitudes of generations/loads, while the
edges can have physical constraints for capacities, distance, connec-
tion types, etc. Thus how to generatively design an ICI satisfying
practical operating conditions becomes the major challenge.
On the other hand, to measure the system resilience, a typical

resilience curve (real performance curve after disruptions) with
four states is illustrated in Fig. 3. Note that the system performance
curves could be different due to different strategies during the
recovery process. Based on the resilience curve, this study defines
the resilience level with respect to changes in the system perfor-
mance after the disturbance. It can be measured by comparing the
resilience curve with the nominal system performance curve. In
other words, the resilience metric is derived from the ratio of the
area under the resilience curve to the area under the nominal

Fig. 1 Flowchart of the proposed generative design framework for ICIs: there are two major components, the
design generator and estimator. And both components are formulated based on graph learning algorithms.
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performance curve. The specific formulation is

Φ =

�T
t0
CR(t) dt�T

t0
CN(t) dt

(1)

where Φ denotes the resilience level, and CR/CN are the resilience
curve and nominal performance curve, respectively. t0 is the
initial time before the occurrence of the disruption, while T is the
termination time of the recovery process and the system settles at
a new stable state. Intuitively this is true since a larger area under
the resilience curve generally means a smaller performance loss
induced by the disruption, and thus the system is more resilient con-
sidering a given disruptive event. For classical resilience-base
design problems, CR is further used in the objectives of the optimi-
zation models for finding the best design.
However, the above resilience term can only be measured after

simulating a disruption event during the system nominal operation.
This type of post-disruption information is hardly accessible during
the design stage. Thus in order to bias the generative design process
towards a more resilient system, a proxy is needed to represent the
resilience level during the design stage. Section 6 discusses the
selection for the proxy in detail. And the actual resilience levels
of the candidate designs become accessible through more expensive
simulations during the post-processing stage.

3 Modeling for Design Generator
Similar to discriminative methods, generative models have been

well established for structured data, for example, the mixture model,
the variational autoencoder, and the generative-adversarial network

[22–24]. Different from the traditional discriminative approach, the
generative model tries to learn the underlying representation of the
training data and tune the parameters of the model to create realistic
outputs that are similar to the input structure. And this rationale
enables the research of generative methods in the design commu-
nity. Various research has been proposed to use the deep learning
model for generative designs [25–27]. But it was not until recently
that the generative models have been extended to unstructured data
inputs, i.e., graphs. In this study, we adopt the GVAE model, in
which high-dimensional representations of the nodes’ information
are encoded as latent vectors to further reconstruct the original
graph. Notice that the focus of this study is on ICIs, and their
nodes/edges have physical information representing the operational
condition. That information is unique and crucial for reconstructing
a physical system.

3.1 Modeling. As a VAE model, the GVAE algorithm con-
tains two consecutive steps—the encoding and decoding. Thus fol-
lowing sections discuss the modeling of such an algorithm from
those two aspects as well as how to train the corresponding data-
driven design model.

3.1.1 Encoding. Similar to the standard VAE model, the
GVAE first needs to encode the high-dimensional node features
Xv ∈ Rf into latent vectors zv ∈ Rd, where f denotes the number
of features. And we use the gated graph neural network (GGNN)
model as the nodes embedder [28]. The advantage of using the
GGNN to embed the nodal information is that it can aggregate
the neighborhood information in close proximity and preserve the
information from the unique structure of each graph. And with
the GGNN model, the input Xv is mapped into a multivariate diag-
onal Gaussian distribution in d-dimensional latent space, which are
parameterized by μv and σv. And the latent representation of each
node zv can be sampled from such a distribution. Following the con-
vention of the standard VAE model, the regularization for encoding
is the Kullback–Leibler (KL) divergence between the latent distri-
bution and the standard Gaussian distribution. Thus, the loss term
for the encoding step can be formulated as

Lencode =
∑
v∈G

KL(N (μv, diag(σv)
2)‖N (0, I)) (2)

3.1.2 Decoding. Different from the encoding part where the
original graph information is embedded into latent vectors, the
decoding aims to reconstruct a graph that is similar to the input
data based on the encoded zv. As for standard VAE with structured
data inputs, the trained neural network for the decoder can auto-
matically reconstruct the output through forwarding propagation.
However, to reconstruct a graph, it is unclear how to directly
output the whole graph in one single forward propagation
process. Several studies have proposed to generate graph structures
in an auto-regressive manner: starting from one node i, connect i to
nodes j, k, m, …, which have the highest probability for connec-
tion, then keep growing the graph node by node until termination
[20,21]. Such an auto-regressive process involves two main deci-
sions at each generation step: which node to connect and use
what type of edge to connect the new node. To answer those
two questions, the GVAE model used as the generator takes
four steps: node initialization, edge selection, edge labeling, and
node updating. And we discuss the formulations of these steps
as follows.
During the node generation process, it is crucial to determine

which information to be utilized for initializing the node represen-
tation. Since the encoding process has already preserved the phys-
ical features of each node by mapping them into a latent
distribution, only the label information remains to be taken care
of. And for physical systems, it is important to consider the type
of each node during the reconstruction process. For example, the
nodes inside a power system could have three different classes—
the generations, the load bus, as well as transmissible node. And

Fig. 3 The resilience curve and four states in an ICI after with the
disruptive event

Fig. 2 The graphical representation of a power distribution
system consists of 123 buses and 123 distribution lines
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the final generated design cannot randomly arrange disparate nodes
violating physical constraints: they must follow the same pattern
learned from the training dataset. Thus the node representation hv
during the encoding step consists of two parts—the initial latent
vector zv is concatenated with the one-hot class vector τv ∈ Rc as
shown in Fig. 4.τv= f (zv) where f (·) could be any appropriate non-
linear classifier for deducing the node labels. And in this study, we
use a three-layer fully connected neural network as the f (·).
Once each candidate node of the graphs has been initialized, the

graph generation process can start by establishing edges between
nodes. Considering the current starting node is vi, the task is to
derive the probability of connecting vi to all other candidate
nodes vj by using an edge ijl (selection), where ℓ is the type of
the connection (labeling). Notice that unlike traditional generative
algorithms on graphs, where the edges are indifferent, here the
edges in ICIs carry rich physical information. For example, in a
power grid, the decision-maker should assign different capacities
to edges according to the magnitude of power loads at both ends.
And to accomplish the tasks for edge selection and labeling, the
feature representation of the candidate edge can first be constructed
by concatenating various vectors:

ϕ(t)
i,j := [h(t)i , h

(t)
j , di,j, Hinit, H(t)] (3)

where hi, hj are the nodal representations; di,j is the distance measure
between node i and j, for instance, the electrical resistance between
two buses in a power grid; Hinit/H is the initial/updated global graph
feature, which is defined as the average of all nodal representations
in this study:

H(t) :=
1
n

∑n
i=1

h(t)i (4)

Notice that all vectors in Eqs. (3) and (4) have an extra index for
time-step t. This is due to the node updating procedure, which is dis-
cussed later. Equation (3) shows the advantage of the auto-
regressive generation process since the generation result not only
depends on local information, e.g., hv, but also considers the
global state of the graph H(t). Once the feature vector for candidate
edge is established, we can start to model the probability of connect-
ing edge ij using type ℓ connection. First, given the edge feature
vector ϕ(t)

i,j ∈ Rf , the distribution of choosing to connect ij via
edge type ℓ is expressed as the product of the probability of con-
necting i to j and the probability of using type ℓ:

P(i↔
ℓ
j|ϕ(t)

i,j ) = P(ℓ|ϕ(t)
i,j , i ↔ j)P(i ↔ j|ϕ(t)

i,j ) (5)

These two probability terms can be further calculated by formulat-
ing softmax functions:

P(i ↔ j|ϕ(t)
i,j ) =

M(t)
i↔j exp [C(ϕ

(t)
i,j )]∑

w M
(t)
i↔w exp [C(ϕ

(t)
i,w)]

(6)

P(ℓ|ϕ(t)
i,j ) =

m(t)

i↔
ℓ
j
exp [Lℓ(ϕ

(t)
i,j )]∑

k m
(t)

i↔
k
j
exp [Lk(ϕ

(t)
i,j )]

(7)

In the above two probability terms, C and Lℓ represent two train-
able, nonlinear functions, e.g., fully connected neural networks,
that map the feature vector to a scalar score. Moreover, additional
masking matrices Mi↔j and m

i↔
ℓ
j
enforce any prior knowledge

about the generated graph. For example, nodes i and j cannot be
connected because they are from different regions, or nodes i and
j can only be connected by a high-capacity edge ℓ. After obtaining
the probability distribution of the edge connection and labeling,
new connection ijℓ can be sampled from the empirical distribution
and the graph grows sequentially.
Notice that after choosing to connect node i to node j, the graph

structure has been changed due to the newly introduced edge and
node. This changing in graph structure leads to changes in the
node representation h(t)i , since nodes in the proximity of node i
are shifting. To update the node representation, GGNN can be
used to re-derive h(t)i in a recursive manner:

h(t)i = GGNN h(t−1)i ,
∑
j|ij∈E

h(t−1)j

( )
(8)

where the initial node feature vector is h(0)i , and the updating aggre-
gates all the feature vectors of nodes that are adjacent to i in the
current candidate graph design. In summary, the aforementioned
edge selection, labeling, and node updating steps are illustrated in
Fig. 5. And the corresponding decoding loss can be formulated as

Ldecode =
∑
G∈D

log (P(G|G(0)) · P(G(0)|zv)) (9)

where the loss term essentially measures the log-likelihood of
reconstructing the graph G given in the dataset D, with the initial
encoded latent vectors zv. Due to space limitations, we have
omitted some detail of the decoding process, including the termina-
tion condition for the graph generation. Readers can refer to
Ref. [21] for more in-depth discussion.

3.2 Performance Aware Generation. So far, the basic loss
terms for the encoding and decoding processes of the GVAE
have been discussed. However, the conventional GVAE model
with the Lencode and Ldecode can only reconstruct candidate
designs that are structurally similar to the samples in the input
dataset. The established two loss terms only focus on quantifying
the errors when encoding the latent design spaces and reconstruct-
ing from the encoding. To enable a generative design for resilience,
the target performance criteria, i.e., the resilience level, needs to be
correlated to the ICIs encoded in the structured, latent design space.

Fig. 4 Node initialization for the decoding process: the latent
vectors zv have been concatenated with their predicted nodal
type, denoting as one-hot vectors

Fig. 5 Illustration for the edge selection, edge labeling, and the
node updating process
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And to achieve this, a nonlinear mapping between the latent vectors
and the performance criteria can be constructed as

R(zv) =
∑
v

σ(f1(zv)) · f2(zv) (10)

where f1/f2 are two fully connected neural networks, and σ is the
sigmoid function. This formulation for estimating the performance
based on latent vectors of the encoded ICIs adopts the idea from the
GGNN graph-level regression model [28]. And it has two desirable
properties:

• differentiable: zv can be optimized not only through the encod-
ing/decoding loss but also via the gap between the intermedi-
ate design performance and the predefined performance
criteria;

• soft attention mechanism: σ( f1 (zv)) acts as an additional
weight that decides which nodes are more relevant to the
current graph-level estimation.

The loss term for finding the locally optimized z∗v is defined as

LQ = ‖R(zv) − Q‖22 (11)

where Q is a predefined performance criterion. And Eq. (11) assem-
bles a regression task on graphs. After training the f1 and f2 using the
training dataset, gradient ascent with respect to the input latent
vector zv for R(zv) can be performed to find promising new candi-
date designs. Particularly, starting from a latent vector of the
encoded ICI, the design with better performance can be found by
following the direction within the latent space to increase the perfor-
mance metric, as shown in Fig. 6. The final design is decoded from
the optimized z∗v by using the trained decoder model afterwards. In
conclusion, with the encoding, decoding, as well as the performance
aware generation process, the overall loss for training the generator
is Lgen = Lencode + Ldecode + LQ.

4 Modeling for Design Estimator
Although the performance training enables the generator to

output desirable designs that optimize the predefined performance
criteria, the candidate designs are still confined to the latent
design space of the input dataset. Moreover, the generator only
uses a simple fully connected neural network model to predict the
performance for efficiency. To further bias the design towards
optimal design space and to fine-pick the “good” candidates, a
more sophisticated performance estimator is needed. As a design
estimator, it needs to learn the mapping between the input informa-
tion (raw information of the ICI) and the output scalar, i.e., the per-
formance metric. And deep learning framework is well known to
have superb performance for predicting numerical labels from high-
dimensional training data. As a result, in this study, we adopt the
graph convolutional network (GCN) [29–31] to construct the per-
formance estimator for the graph-like ICIs.

4.1 Formulation. The convolutional neural network (CNN) is
well known for its excellent performance on image classification for
nearly two decades [32]. However, the application of CNN on 2D
Euclidean space is not extended to unstructured topological space
until Bruna et al. [33] propose the generalization of CNN to
signals defined on the graphical domains. This extension signifi-
cantly improves the applicability of the convolution process on
unstructured data, such as information generated from social net-
works or chemical compounds. After their work, the research
about convolution on graphs diverges into two directions: one is
working on the spatial domain of graphs while the other integrates
the spectral graph theory into the convolution process. And the
breakthrough works in Refs. [29,30] have greatly increased the
potential of the spectral GCN by proposing an efficient first-order
approximation of spectral graph convolutions. This study utilizes
the latter approach, i.e., the spectral GCN. And the GCN takes
the advantage of the underlying information embedded in the

Fig. 6 Flowchart for training the GVAE-based design generator: (a) Training the GVAEmodel
with the standard encoding and decoding loss and (b) Performance aware generation by uti-
lizing another surrogateR(zv) and gradient ascent with respect to zv: the latent space has been
divided into six parts for illustration purposes.
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adjacency matrix to perform the learning tasks for networks. There-
fore, GCN has superb performance for the inference task on graph
inputs.
It has been proved that the GCN can be derived from the traditional

CNN by studying the spectral graph theory [29,30]. GCN can be
treated as the generalized case of the CNN on arbitrary, unstructured
space. And following the formulation in Ref. [31], the propagation
rule or the convolutional operator for graphs requires the degree
and weighted adjacency matrix as additional parameters. Different
from conventional adjacency matrix with binary entries only, the
weighted one can include other values than 0/1 representing the
edge weights between different pairs of nodes. This characteristic
enables the learning task fulfilled by GCN to take advantage of the
rich graphical information of ICIs. On the other hand, the degree
matrix D is diagonal and aggregates the neighborhood information
for each node. It can be obtained based on A: Dii =

∑
j Aij. With

the degree and adjacency matrix on hand, the GCN propagation
rule is defined as

GCN(X) = D−1/2AD−1/2XΘ (12)

where Θ are the trainable weights of each convolutional layer. There-
fore, the graph inference problem can be solved by constructing a
deep neural network (DNN), for instance, q= σ( f2( f1(GCN2(GCN1

(X ))))), where GCN1/GCN2 are the convolutional layers defined in
Eq. (12), and f1/f2 are adequate nonlinear functions.

4.2 Training. As for using the GCN algorithm to evaluate the
performance of generated designs, the specific training process
needs to be discussed. Like conventional DNNs, the training
process for the GCN-based estimator requires gradient information
to optimize the trainable parameters as shown in Fig. 7. The dataset
of ICIs contains the input feature X ∈ RN×f , where N is the number
of nodes inside the graph and f is the number of features considered.
For instance, for the 123-bus power grid shown in Fig. 2,X contains
123 rows and six columns that includes the information of the
power demand magnitude, generation capacity level, the voltage
angle, etc. Whereas the label y used for training the estimator is a
numerical value for each training sample. Since the generation

process needs to be biased to have a more resilient system design,
the label should represent the overall system resilience level. And
the choice for the label y is further discussed in Sec. 6. The loss
term used to train the estimator is the mean squared error (MSE)
between the estimated label q and the actual performance y:

Lest =
1
n

∑
i

(qi − yi)
2 (13)

Notice that, unlike the design generator, the estimator can be pre-
trained on the existing training dataset so that estimating the perfor-
mance of new designs is computationally cheap during the iterative
generating process.
After training a GCN-based design estimator, we can combine

the module with the generator to form an iterative process for refin-
ing the designs. As shown in Fig. 1, a fixed number of zv is sampled
and are used to generate the corresponding designs. Then the esti-
mator determines the best batch of designs in terms of metric Q.
If the process is not converged, i.e., the difference between
the last best design and the current optimal one is large, then the
top c generated designs are mixed with the original dataset to
perform another round of generation. To improve gradually the

Fig. 8 A small-scale power system mapped to an example meshgrid with a disruptive event
sampled at cell (3,5)

Fig. 7 Flowchart for training the GCN-based design estimator
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generated samples, the batch of the best designs replace the group of
the original training data that have been ranked as the lowest
performance.

5 Post-Processing Simulation
So far the performance criterion Q for training the design gener-

ator/estimator has been discussed. And for an efficient training
process, the performance of each design is represented by an
easy-to-evaluate scalar metric: rather than the actual resilience
level, it is a proxy to access the system resilient performance.
Recall the system resilience which mainly measures the system’s
capability toward unforeseen disruptions. And it is hard to obtain
the resilience level without running experiments for systems under-
going disturbances. As a result, we add a post-processing stage to
further evaluate the candidate designs filtered by the surrogate
metric Q. Since the initial design space has been shrunk from
millions of candidates to hundreds through the iterative biasing gen-
eration, it becomes tractable for running more complex, simulation-
based evaluations during the post-processing stage.
Following the convention of the studies for ICI, here the metric

used in the post-processing simulation is the expected demand
not supplied (EDNS). And it is defined as

EDNS =
∑
ei∈Sei

PeiCei (14)

where ei denotes a possible disruptive event and Sei is the set of all
events simulated. Pei represents the probability of having the event
ei, and Cei is the amount of lost demands after ei. In Fig. 3, the
EDNS can be viewed as the area between CR and CN, which quan-
tifies the capability of the system withholding external disruptions.
And the optimal design can be determined as the one with the small-
est EDNS after acquiring the post-processing results.
To obtain the Cei after each ei, we establish meshgrids for

mapping each candidate design with geological information.
Figure 8 illustrates the mesh view of the IEEE 14-bus system
with a disruptive event. Notice that, the mapped mesh view of the
system is helpful for simulating realistic disruptive events since
external disruptions are usually confined within a specific region.
For example, as shown in Fig. 8, a storm with predefined Pei is sim-
ulated to happen at cell (3,5), which leads to the highest probability
of failure for node 10 and edge (10,11). Also, the components
within the close proximity of cell (3,5), including node 10, 14
and edges around, incur smaller failure probability. Thus, based
on the information from the meshgrid, the curtailed performance
of the ICI caused by random disasters can be simulated. For
instance, Cei from solving the optimal power flow (OPF) problem
for power systems, or obtaining the maximum flow solution for

an impacted supply chain network, after disconnecting the
damaged components. With each Pei and the corresponding Cei ,
the overall EDNS of the candidate design can be found by perform-
ing several runs of simulations in a Monte Carlo manner.

6 Case Studies
To validate the proposed generative design method, experiments

about designing different kinds of ICIs are considered. Section 6.1
presents the design results for small-scale synthetic network
systems. And Sec. 6.2 further discusses the applicability of the pro-
posed framework on large-scale IEEE test feeders. The design gen-
erator and estimator are implemented in Pytorch and Pytorch
Geometric packages. The model is trained on a PC with a
10700K 8-core processor and NVIDIA GTX3080 GPU.

6.1 Synthetic Network Systems. First, we utilize the Net-
workX package [34] in PYTHON to randomly generate 10,000
Watts–Strogatz small-world graphs as the design training dataset.
And 10% of the dataset is used for validation. This type of
random graphs has the small-world properties, which include
high clustering and short average path length. Those properties
enable researchers to use the Watts–Strogatz model to understand
realistic networked systems, for instance, social networks and
supply chain systems. Figure 9 demonstrates example Watts–
Strogatz graphs generated for the case study. Here a small-scale
system is considered, which includes 33 nodes and the same
number of edges. We can see from Fig. 9 that the initial graphs
used for training has few clusters and several nodes have higher
degree comparing to remaining nodes. This is desirable since for
a supply chain network, nodes with higher degree can represent
transportation hubs, while clusters indicate different coverage for
separated communities.

6.1.1 Generative Network Design. As for designing the ICI,
we need to define the physical features of the nodes and edges.
And in this case study, the nodes have a numerical feature to indi-
cate the magnitude of demands/supplies as well as a categorical
feature declaring the type of the node: demand, supply, and transfer.
This categorical feature is pre-sampled based on the degree of each
node. For example, a node with higher degree has much higher
probability of being the supply node, while nodes with small
degree are likely sampled as demand or transfer nodes. On the
other hand, the edges have two numerical feature denoting the
capacity and cost of each edge. Like classical network flow prob-
lems, the cost is measured in terms of per unit flow on the corre-
sponding edge. And to quickly evaluate the design generated
during the iterative process, the performance metric Q is defined
as the magnitude of maximum flow with the minimum cost inside
the network, denoting as fmax. In order to solve this multi-source
multi-sink problem and derive the fmax, two dummy nodes are
added to the sampled Watts–Strogatz graphs. These nodes represent

Fig. 9 Examples of small-scale Watts–Strogatz graphs used as
the training data

Fig. 10 The training loss history for the estimator on synthetic
network system data
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the pseudo-source and destination node, respectively. And here the
Ford–Fulkerson algorithm is utilized to calculate fmax for each can-
didate design in O(Ef) time, where E is the number of edges and f
denotes the maximum flow magnitude.
Once the training dataset is ready, the estimator can be pretrained

for quickly evaluating the designs during generation. Figure 10
shows the training history of the GCN-based estimator, where the
y-axis represents the MSE between the ground-truth and the esti-
mated performance metric. Notice that here the evaluation MSE
is lower than that of the training data during the initial epochs.
This is due to the fact that at each epoch, we train the model with
stochastic gradient descent and sum up the training error of each
sample. Then the training MSE is derived as the average of the
overall error terms. As a result, the error for the first training
sample could be significantly larger than that of the last few
samples. On the other hand, the error of each validation sample is
at least close to that of the last batch of training samples. Thus,
the initial validation errors have smaller magnitude than the
derived training errors.
Based on the training dataset, our goal for the design is to come

up with a new and optimal design that satisfies the demands within
the network while maintains steady performance after disturbances.
We set the termination criterion for the training process as reaching
150 iterations. Figure 11 summarizes the distribution of the perfor-
mance metric Q of the training dataset and the 500 generated
designs, as well as the best design evaluated by the estimator at
each iteration. Moreover, to show the performance biasing design
process for a resilient system, we also show the distribution of the
EDNS of the 500 designs along with the generation metric Q.
Notice that the in-production generative design process only
needs to execute the post-processing step after the training has
been converged. Here to demonstrate the correlation between the

training metric Q and the EDNS, we conduct post-processing sim-
ulations even during the middle of the generation.
According to the results shown in Fig. 11, the generative design

method successfully biases the candidate designs toward predefined
performance metric, especially for the training label Q. Though the
changes in the resilience index EDNS are not significant at the same
level as that of Q, there still exists a trend for improvement: the
overall EDNS decreases significantly during the first 100 training
iterations. On the other hand, take the best design generated at
each iteration as an example; the first version of the design contains
long branches and few redundant paths. This is not a good practice
for designing a resilient ICI like supply chain network. After several
iterations’ training, the candidate designs become to have clustered
communities as well as central hubs along with substations. Those
hierarchical components lead to a much smaller EDNS. At the last
iteration, the central skeleton of the network changes from a tree
structure to a ring shape, which further introduces more redundancy
to the already high clustering network. This shifting in design strat-
egies also demonstrates the capability of the proposed framework
on learning good proprieties from existing training samples.

6.1.2 Comparative Study. To demonstrate the advantage of the
proposed generative design framework, a comparative study based
on the synthetic network design dataset is first conducted with and
without the performance aware routine. And Table 1 summarizes
the results in terms of system performance as well as the computa-
tional cost. From the table, although the average training time per
iteration is reduced after removing the performance aware loss,
the convergence toward the optimal design is much slower. When
the generator is trained with Lencode and Ldecode, the performance
criterion as well as the EDNS at iteration 150 only surpasses that
of the model trained with the additional LQ at iteration 50. And
this observation is consistent with the motivation of adding LQ to

Fig. 11 Snapshots of the empirical distribution of the metric Q of the training data and the best designs generated, as
well as the post-processing EDNS metric at different training iterations for the synthetic network test case
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the generator. Since this performance aware generation loss make
finding the best latent representation z∗v depends not only on the
structure information but also on the resulting performance.
Besides updating the training dataset, this enables a way to acceler-
ate the convergence of the candidate design toward desirable perfor-
mance criteria.
Furthermore, the training time results in Table 1 indicate that

removing the training process for Eq. (11) can reduce the computa-
tional cost by around 19 s per iteration (8.0%). Compared to the cost
for optimizing Lencode and Ldecode, this difference is not significant.
Although deriving the performance regression loss LQ requires
training two additional neural networks f1 and f2 defined in
Eq. (10), we simply set these two neural network models as three-
layer fully connected networks for efficient training. And optimiz-
ing the generator through LQ is a regression task consisting of
only numerical backpropagation computations. Whereas the
major computation burden for training the generator is coming
from the decoding part. Since to interpolate a valid design from zv
during training, the stakeholder needs to grow the candidate
design node by node while updating the states of established
nodes and the graph. Training this decoding process requires a
more computationally expensive process defined by Eqs. (3)–(8).
Additionally, we compare the performance of the proposed

framework to existing baseline algorithms, such as the resilience-
based design (RBD) method proposed in Refs. [35–37]. Specifi-
cally, the heuristic optimization-based approach from Ref. [35] is
reproduced because it adopts the same performance criteria fmax

to approximate the system resilience and considers similar synthetic
supply chain networks as the case studies. To compare the perfor-
mance of a resilient design, systems with three different scales,
33, 100, and 250 nodes, are evaluated. For the RBD method, we
establish candidate edges by setting the graph as fully connected.
The governing equation for each edge is formulated using the
parameters given in Ref. [35]. And for the generative method,
three training datasets each of 10,000 synthetic samples are pro-
duced. The deep generative model is then trained for 150 iterations.
Results shown in Table 2 are the ones with the best EDNS selected
from the post-processing step.
Based on the numerical results for the system resilience, the RBD

method can indeed optimize the proxy performance metric Q.
However, the more accurate resilience index EDNS indicates the
insufficiency of only optimizing toward Q. One potential reason
for this discrepancy is that the design solved by RBD tends to
have multiple long branches, instead of loops or clusters found in
the designs from the generative framework. Since RBD only
selects an edge that can attain a high level of Q with the
minimum cost, it does not reckon about potential redundancies pre-
sented in real-life systems. And the difference in the EDNS results
for RBD and the generative method demonstrates the versatility of
the latter approach. One advantage of the generative method is that
it can mine intrinsic knowledge from the training data via the deep
learning mechanism. On the contrary, the RBD is a discriminative
method that is not context-aware. The design solution solely
depends on the predefined objective and constraints, which lacks
the global knowledge of a resilient design.

As for the computational cost, the RBD method does not require
training but needs to run repeatedly for each test case. On the other
hand, the proposed generative framework can be trained offline.
And during the online stage, we can have an initial input zv as a
random normal vector. Then the candidate design can be generated
by gradient ascent and feeding z∗v into the trained decoder. Thus, the
comparison for computational cost focuses on the time spent for
outputting the best design solution only. During the generation
stage, the most expensive part of RBD is solving the fmax in
O(Ef) time for each possible solution while optimizing the solution
by a heuristic method. The corresponding computation cost is qua-
dratically increasing with respect to the number of nodes. And this
can be seen from the numerical results in Table 2. For the generative
method, we include the post-processing time plus the time for
testing/generation. And the computational cost for generation is
slightly scaled with respect to the size of the network system.

6.2 IEEE Power Grids Test Case. Despite the small-scale
test case based on synthetic networks, we also consider real-world
dataset about the power systems. In order to train the design estima-
tor and the generator, we first generate a power grid dataset consist-
ing of 138,000 sample systems that range from 50 nodes to 150
nodes. The sample system designs are generated by the SynGrid
package in MATPOWER [38]. And since the exact resilience
level of a system design is hard to quantify without knowing the
online response during disruptions, here we adopt a surrogate
metric, the total capacity ratio of the system. This metric implicitly
measures how well the system gonna behave towards external dis-
ruptions. And it is defined as

CR =

∑
ij|ij∈E fij∑
ij|ij∈E uij

(15)

where fij is the actual flow on edge ij from the OPF results and uij is
the capacity assigned to ij. A lower capacity ratio means that the
design can have more room for unpredictable flows. And this
metric can indicate the tolerance to failures for an ICI during disrup-
tive events, e.g., sudden load surges or line outages. However, the
final performance metric requires additional compensations to
prevent the generated designs from assigning unnecessary large
capacity to every edges for obtaining a low CR. Therefore, we take

Table 1 Comparative analysis results of the system performance and computational complexity for the synthetic network systems

Training Q Sample designs Q EDNS

Generator loss terms Avg. training time/iter Iteration P10 P50 P90 P10 P50 P90 P10 P50 P90

Lencode + Ldecode 219.3 s 50 11.85 19.81 28.16 18.95 21.59 23.59 34.4 39.16 42.33
100 19.57 27.38 34.26 27.23 30.11 32.55 27.17 33.2 35.94
150 25.54 31.7 36.52 32.18 34.97 37.22 21.77 26.84 28.95

Lencode + Ldecode + LQ 237.9 s 50 17.16 29.53 42.77 27.53 32.12 35.02 24.04 27.31 29.69
100 31.8 44.82 56.11 42.1 46.95 50.4 17.91 20.62 22.8
150 44.38 55.7 64.25 52.64 56.76 60.36 14.15 17.96 21.22

Table 2 Comparison results with the baseline algorithm for the
synthetic network systems

Method Test case Sample design Q EDNS Solving time

RBD 33 nodes 64.11 17.89 18.30 s
100 nodes 180 55.65 75.49 s
250 nodes 346.3 150.7 233.2 s

Generative 33 nodes 64.24 10.16 83.77 s
100 nodes 178.2 42.77 91.03 s
250 nodes 337.4 130.5 108.6 s

Journal of Mechanical Design MARCH 2023, Vol. 145 / 031705-9

D
ow

nloaded from
 http://asm

edc.silverchair.com
/m

echanicaldesign/article-pdf/145/3/031705/6945455/m
d_145_3_031705.pdf by guest on 24 April 2024



the cost of having large edge capacity into consideration. And the
total cost of establishing all edges with capacity uij is denoted as

CE =
∑
ij|ij∈E

a · uij (16)

where a is a predefined parameter measuring the unit cost of edge
capacity. The training label is then defined as

Q = αCR + (1 − α)
CE

K
(17)

where α is the weight hyperparameter and K is a constant for normal-
izing. The training task is thus to minimize Q. Notice that the pro-
posed framework is not limited to any specific form of metric, and
it can adopt other appropriate resilience-driven metrics by changing
the formulation of the Q.
To show the applicability of the design framework, we trained

the model on the SynGrid dataset and followed the steps depicted
in Sec. 3.2 to generate brand new designs with a low level of
capacity ratio. Figure 12 shows the samples from the progress of
the gradient ascent and the designs decoded from the embedded

Fig. 12 Illustrations of new designs generated as well as their capacity ratios and EDNS for the power grid test case

Fig. 13 The solution of an expansion problem generated from the framework and the specific physical information consid-
ered: (a) the system is expanded by sequentially adding nodes and edges outlined in the dotted box, and (b) the nodes have
six types while the edges have three different categories
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zv. Here, a mid-scale 57 nodes system and a large-scale 100 nodes
system are considered. Although the generative design process
only uses a surrogate metric instead of the actual system resilience
like EDNS, both the proxy metric used for training and the more
expensive resilience index show the similar trend throughout the
iterations. This finding suggests that the relatively cheap perfor-
mance metric Q is suitable for deriving a resilient design via the
generative process.
Moreover, different from designing a brand new system, the

expansion problem sometimes is more prevalent for ICIs. For
instance, determining where to add new buses in an existing power
grid to enhance the current service or how to allocate new transpor-
tation hubs in a supply chain network to improve the coverage. In
order to solve an expansion problem, we can include the prior knowl-
edge constraints, i.e., existing connection information, as masking
matricesMi↔j and mi↔

ℓ
j
shown in Eqs. (6) and (7). Such an informa-

tion injection during the generation process is also useful when the
stakeholder requires to put hard constraints on the final design.
Figure 13 illustrates the expansion process for a 120-bus system

after adding two additional nodes. The figure also shows the phys-
ical information for the original ICI and the expanded system. Six
types of nodes are considered and the edges have three categories
based on their rated capacities. For this test case, the objective is
to enhance the system generation capacity by adding a nuclear
power plant with an additional transitive bus. So the design solution
is the optimal location to connect the new components and the cor-
responding connection type. The three networks shown in Fig. 13
are the original system, the best solution for expanding after one
generation iteration, and the final expanded system. And the
second network is constructed by connecting the extra transitive
node with a high-capacity edge, denoted as the additional line in
the dotted box. This intermediate result includes additional redun-
dancy without increasing the steady-state power flow fij. As a
result, the capacity ratio decreases based on Eq. (15). However,
the final expanded system has the nuclear generation connected to
the new transitive bus. Compared to other types of generation
nodes with a few hundred megavolt-ampere (MVA) capacity, the
nuclear power plant usually has the larger generation capacity
(above 1000 MVA). And this addition enlarges the fij significantly
across the entire system: average fij increases from 150 MVA to 170
MVA in this case. Therefore, the capacity ratio increases after
adding nuclear generation, and the numerical results here show a
non-monotonic pattern in terms of the proxy metric. Notice that
the generated designs from the GVAE model only contain categor-
ical information for each node and edge, e.g., a node is assigned as a
coal-fired power plant and an edge is allocated with high capacity.
To conduct OPF simulations in the MATPOWER and to obtain the
capacity ratio, we have sampled numerical ratings for generations
and edges, based on the statistics in the SynGrid package.

7 Conclusion
In this study, a generative design framework for interdependent

network systems has been developed. Different from traditional
model-based design methods, the developed approach utilizes
advanced graph learning algorithms to enable a data-driven
network design solution, therefore eliminating the requirements
for developing explicit mathematical models for the interdependent
networked systems. The proposed design framework is capable of
mining useful properties from existing system designs and identify-
ing candidate designs that meet predefined performance criteria.
Moreover, prior knowledge about the system can be conveniently
included for design during the generation process through
masking information included in the generator module of the frame-
work. Case study results based on various scales of synthetic
network systems along with power systems have shown the appli-
cability of the developed generative design approach. For future
studies, it would be meaningful to investigate directly coupling of
the general resilience metrics with the system specific design

performance criteria. Additionally, the case studies presented in
this paper considered limited types of interdependent networks
such as the power systems, and other engineering system design
applications can be explored using the developed generative
design approach.
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Nomenclature
Parameters

G = graph
H = graph representation in the generator
hi = node representation in the generator
zv = latent feature vector for node v
Xv = feature vector for node v
i, j = node index in the graph
τv = class of node v
ϕij = feature vector for edge generation

Variable

C, Lℓ, f1, f2 = trainable neural networks
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