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This paper presents a computationally tractable approach for designing lattice structures
for stiffness and strength. Yielding in the mesostructure is determined by a worst-case
stress analysis of the homogenization simulation data. This provides a physically meaning-
ful, generalizable, and conservative way to estimate structural failure in three-dimensional
functionally graded lattice structures composed of any unit cell architectures. Computa-
tional efficiency of the design framework is ensured by developing surrogate models for
the unit cell stiffness and strength as a function of density. The surrogate models are
then used in the coarse-scale analysis and synthesis. The proposed methodology further
uses a compact representation of the material distribution via B-splines, which reduces
the size of the design parameter space while ensuring a smooth density variation that is
desirable for manufacturing. The proposed method is demonstrated in compliance with
minimization studies using two types of unit cells with distinct mechanical properties.
The effects of B-spline mesh refinement and the presence of a stress constraint on the opti-
mization results are also investigated. [DOI: 10.1115/1.4046237]
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1 Introduction
Topology optimization of continuum structures and functionally

graded materials typically focuses on maximizing stiffness or
minimizing compliance, but the design of optimal material distribu-
tion with stress constraints has gained momentum in recent years.
The existing literature has addressed several inherent challenges in
stress-constrained optimization that are not present in purely
volume-constrained compliance minimization. Examples include
the highly nonlinear and nonconvex nature of the design problem,
often associated with singular topologies (cf. [1,2]), and the locality
of the stress constraints, which requires a balance between efficiency
and accuracy (cf. [3–5]). Most of these investigations are concerned
with the solid-void topology design of homogeneous structures.
When designing functionally graded lattice structures with stress
constraints, however, a reliable and physically meaningful pre-
diction of yield is needed for lattice unit cells with intermediate den-
sities between 0 and 1. While homogenization enables the
interpretation and realization of intermediate material densities in
terms of the effective stiffness of specific mesostructures, the
homogenized or macroscale stress underpredicts the peak stress in
the underlying mesostructures (here, the term mesostructure refers
to the arrangement of the material into unit cells that comprise a
lattice structure). The point of initial failure in the architected mate-
rial depends on the detailed local geometry and material com-
position of the unit cell, which are not retained during the
homogenization process.
This work focuses on stress-constrained multiscale design prob-

lems. It differs from the existing work in the literature which
focuses on stress-constrained designs at the mesostructural level
(cf. [6–8]). These studies aim to design architected materials with

reduced stress concentrations to delay the point of failure in the
mesostructure given any macroscopic loads. However, they do
not enable the efficient prediction of when failure occurs in the
mesostructure as a function of the homogenized strains, which is
of primary interest to this paper. The ability to do so is needed in
the multiscale design of functionally graded lattices composed of
these mesostructures.
Various methods have been proposed in the literature to define

yielding in materials with intermediate densities for the purpose
of structural optimization. In the context of designing solid-
void topologies, power-law relationships between stress and mate-
rial density have been introduced as an interpolation scheme that is
designed to alleviate singularities as density approaches zero [2,4].
Physics-based stress–density relationships have been derived ana-
lytically and used to optimize special classes of materials, such as
rank-2 sequential laminates in two dimensions (2D) by Duysinx
and Bendsøe [9] and then laminates of any rank by Allaire et al.
[10]. Lipton and Stuebner [11] optimized functionally graded lat-
tices with multiscale stress constraints that connect macroscale to
local-scale stresses for fiber-reinforced structures in 2D. Stump
et al. [12] obtained stress-constrained designs of functionally
graded lattices with arbitrary material compositions using the aver-
aged stress within each phase, but they did not account for the
geometry of the material interfaces, which are especially important
for architected materials. A generalizable yet accurate way to
describe yield at intermediate densities for arbitrary mesostructural
architectures has not emerged until very recently. Pasini et al. [13]
used on-the-fly homogenization nested within the optimization loop
to directly determine the effective stiffness and local peak stresses
when designing functionally graded lattices in 2D. A more compu-
tationally scalable approach applicable to three dimensions (3D)
was proposed by Cheng et al. [14]. The yield envelopes of metallic
mesostructures at intermediate densities were approximated by
Hill’s criterion. Surrogate models describing the material constants
in Hill’s criterion as a function of density were constructed from
plastic simulations of the unit cell.
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An alternative way to predict yield at the mesoscale is proposed
here for the design of functionally graded lattices with any unit cell
architectures consisting of solid and void. The proposed measure of
yield differs from Ref. [14] in that it can be determined by analyzing
the available simulation data for homogenization, thus avoiding
additional nonlinear simulations of the unit cell. Furthermore, it is
guaranteed to be conservative to the accuracy of the unit cell simu-
lations. It is based on the worst-case stress in the mesostructure,
which was introduced in Ref. [6] in the context of designing archi-
tected materials with improved strength performance. Here, it is
used to provide a conservative estimate of mesoscale yield when
designing at the macrostructural level.
The stress prediction capability is part of a computationally trac-

table framework for designing lattice structures for stiffness and
strength. Surrogate models capturing the behavior of the mesostruc-
ture as a function of density are generated to avoid the difficult
problem of analyzing detailed fine-scale features when designing
the coarse-scale structure. Furthermore, the coarse-scale density
field is parametrized by B-splines. B-splines have been used previ-
ously to represent density in topology optimization where the
authors demonstrated the ability of splines to provide automatic fil-
tering and length scale control, produce mesh-independent results
for multi-resolution design, and handle design-dependent loads
[15–17]. The use of splines also provides control over the smooth-
ness of the density field, which could help mitigate the possibility of
large stress concentrations at transitions from nearly solid elements
to low volume fraction elements with small strut sizes. Smooth
density variation could also aid in manufacturing, where sharp
changes in the structure could lead to discontinuities and high-
temperature gradients in laser-based processes and a corresponding
degradation in performance. Finally, operating on spline control
points can result in orders of magnitude fewer design parameters
than element-wise design approaches. This compact representation
enables tractable numerical differentiation for gradient-based opti-
mization. This feature is leveraged in this work to illustrate the flex-
ibility of the approach to be easily implemented even when using
the commercial analysis software that may make it tedious or infea-
sible for engineers to obtain analytical gradients of the simulation.
However, it should be noted that analytical gradients are available
for the spline representation itself, so whenever analytical gradients
are readily available, they can be incorporated into the approach to
realize computational savings during the optimization process. A
supplemental document (available in the Supplemental Materials
on the ASME Digital Collection) provides additional details on
deriving the sensitivities of the spline representation and using
them within the context of the types of optimization problems
described in this work.
The procedure for obtaining surrogate models of stiffness and

strength is presented in Sec. 2. The details of the B-spline represen-
tation are given in Sec. 3. Sections 4 and 5 describe the optimization
problem formulation and results. Finally, Sec. 6 concludes with a
discussion of the demonstrated results and possibilities for future
work to address the weaknesses of the proposed method and
make further progress in multiscale design.

2 Reduced-Order Models for the Lattice Structure Unit
Cells
The development of surrogate or reduced-order models (ROMs)

to describe the homogenized mechanical response of the mesostruc-
tures as a function of mesostructural parameters is necessary for
computationally tractable multiscale design [18–20]. The presence
of fine-scale features in a functionally graded lattice requires an
exponential increase in meshing and simulation costs if the detailed
mesostructural geometries are analyzed directly in traditional
approaches to computer-aided design [21]. The approach presented
here mitigates the computational burden by precomputing the struc-
tural response of defined lattice structure unit cell geometries of
interest and capturing the response using simple surrogate

models. The constitutive properties for each element in the
finite-element mesh of the macroscale lattice can then be defined
by querying the cheap surrogate models for the homogenized
mechanical properties of the unit cell of interest at the prescribed
macroscale relative density. This approach maintains reasonable
physical accuracy with much cheaper finite-element simulations.

2.1 Design Representation Using Geometric Projection.
Training data for the surrogate models are obtained via finite-
element analyses (FEAs) of the unit cells, the geometries of
which are represented using the geometric projection approach
described in Refs. [20,22–25]. Rod primitives are used to define
the struts of the unit cell by the 3D coordinates of each endpoint
and the rod diameter, thus providing mesh-independent means of
defining the unit cell designs. To analyze the structural performance
of the unit cell, the rods are projected into an orphan mesh of 803 3D
continuum finite elements, yielding a total of 512,000 elements. In
the finite-element projection, the geometry is described implicitly
by assigning appropriate material properties to each element. This
is done by sampling around the centroid of each element in a sphe-
rical volume that circumscribes the cubic brick element in order to
determine the fraction of the element that lies within the boundaries
of rod primitives. Elements that lie completely within the rods
describing the unit cell geometry are assigned a volume fraction
of 1 and Young’s modulus of the constituent material of the rod.
Elements that lie completely outside of the geometry are considered
to be void space and assigned Young’s modulus many orders of
magnitude below the constituent material, although still non-zero
to maintain numerical stability of the finite-element simulation. Ele-
ments that lie partly within the geometry are assigned Young’s
modulus that linearly interpolates Young’s modulus of the constit-
uent material proportionally to the volume fraction of the element.
The analysis presented here uses the same approximate interpola-
tion approach as Ref. [23] where elements are separated into discre-
tized volume fraction bins to make writing the analysis input file in
the commercial FEA software ABAQUS more tractable. The accuracy
of the design discretization through geometric projection and the
resulting finite-element simulations increase with a finer mesh res-
olution, but must be balanced against the associated computational
expense. The mesh resolution used here was deemed a reasonable
tradeoff between accuracy and expense in light of the previous geo-
metric projection work such as Ref. [22]. However, adaptive mesh
refinement and exact interpolation approaches would yield further
increases in the accuracy of the analyses and the resulting surrogate
models of homogenized unit cell properties. The use of the geomet-
ric projection method to represent designs incurs an additional com-
putational cost compared to voxelized design representations, but
the drastic reduction in design parameters and enforcement of
simple geometric primitives that are known to be manufacturable
make it suitable for our application.

2.2 Constitutive Relationship. Surrogate models for the con-
stitutive relationship seek to capture the effective mechanical
response of the mesostructures in the context of a macroscale lattice.
This work utilizes asymptotic expansion homogenization (AEH) to
estimate the homogenized constitutive tensor within a lattice [26].
AEH utilizes the periodicity of cellular lattices to estimate homo-
genized bulk properties at the lattice scale as shown in Eq. (1),

CH =
∑
ij

1
|Ω|

∫
C(∇χij ⊗ Eij)dv (1)

where the homogenized constitutive tensor ℂH is computed from
constituent material properties ℂ, microscale corrector displace-
ments χij, and microscale strains Eij. The derivation of this equation
is excluded here for brevity, but readers are encouraged to read
Refs. [26,27] for further details. Six forward simulations are
solved for the six independent unit test strains (three normal
strains and three shear strains) to obtain the necessary microscale
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results for Eq. (1). These test strains utilize periodic boundary condi-
tions that are applied in ABAQUS following the procedure outlined in
Ref. [28].
Several different rod diameters were sampled to span a range of

relative densities from approximately 2% up to 100% or fully solid.
The homogenized constitutive tensor was obtained at each relative
density. The data were then fit using a weighted least-squares
approach where the relative error of each entry was minimized
instead of the absolute error to avoid washing out the results at
low volume fractions. Each of the three independent elements of
the cubically symmetric constitutive tensor for the unit cell geome-
tries of interest was fit using independent third-order polynomial
functions. These surrogate models were then included in the
ABAQUS user-defined material model (UMAT) to define the material
properties for each unit cell geometry.

2.3 Model of Yield Stress. The unit cell is assumed to yield
when the peak von Mises stress in the unit cell exceeds the yield
stress of the constituent material. The yield surface of a specific
unit cell geometry is a function of the relative density as well as
the magnitude and direction of the homogenized stress state. An iso-
tropic yield model is proposed here based on the worst-case stress in
the microstructure. This approach has the advantage of being simple
yet conservative by avoiding the difficulty associated with capturing
the complex anisotropic shape of the yield surface in a high-
dimensional stress space. At the same time, it can be obtained
from analyzing the linear elasticity simulation data available from
the homogenization process discussed in Sec. 2.2.
The worst-case stress, λ, for a mesostructure with a fixed relative

density is defined as follows [6]:

λ(ye) = max
‖ŜM‖=1

σm(ŜM , ye) (2)

where σm is the von Mises stress at a point ye in the mesostructure.
In other words, the worst-case stress is the largest von Mises stress
at point ye given any possible homogenized stress, ŜM , with a norm
of 1. Simplifying the subsequent discussions with vector notations
for the stress and strain, it is possible to write the square of the von
Mises stress σm at the point ye as a vector quadratic function of ŜM :

σ2m(ŜM , y
e) = ŜTMTv(y

e)ŜM (3)

where Tv is a 6-by-6 Hessian matrix given by

Tv(y
e) ≡ C−1

H G(ye)TVTVG(ye)C−1
H (4)

Tv represents the collective effects of: ℂH, which is the homoge-
nized stiffness tensor (in the matrix form) obtained in Sec. 2.2; V,
which is another 6-by-6 matrix defined such that

����
2/3

√
Vσ gives

the deviatoric stress of any stress vector σ; and G(ye), which
maps from macro strain to the mesostructural stress at ye and is
the quantity integrated in Eq. (1) to obtain ℂH as follows:

CH =
1
|Ω|

∫
G(ye)dv (5)

Using Eq. (3), it is possible to show that the worst-case stress λ in
fact points to the largest eigenvalue of Tv. The readers are welcome
to Ref. [6] for additional details.
For any SMwhose norm is not 1, Eq. (3) can be modified to define

a quadratic mapping between SM = ‖SM‖ŜM and σm such that

σ2m(SM , y
e) = STMTv(y

e)SM = ‖SM‖2ŜTMTvŜM (6)

It can further be shown that

max
SM

σm(SM , ye) = ‖SM‖λ(ye) (7)

This means that the local von Mises stress at any point ye in the
mesostructure is at most λ times the magnitude ‖SM‖ of the homog-
enized stress SM. A single worst-case stress measure is then

determined for the entire unit cell by computing λMax as the
largest λ(ye) over all ye. For a given relative density, λMax indicates
the largest vonMises stress that can possibly be present anywhere in
the unit cell as an amplification factor of the homogenized stress
magnitude. It is independent of the direction of SM. The resulting
yield model is therefore isotropic. However, the worst-case stress
has merit in its simplicity in that it can be described by a scalar func-
tion of the relative density. More importantly, it provides a conser-
vative estimate of the homogenized stress magnitude, below which
designers can be certain that the peak von Mises stress in the mesos-
tructure is below the yield stress of the constituent material.
To construct a ROM for the worst-case stress, let �ρ denote the

relative density. Then, for each �ρj where there is simulation data
for the constitutive ROM, the worst-case stress measure is obtained
in the following manner: the matrix Tv(ye) is assembled for every
point ye on the unit cell mesh; the largest eigenvalue λ(ye) of
Tv(ye) is then computed; λMax(�ρj), which is the maximum λ(ye)
over all ye on the mesostructure, is finally determined. Once all
the (�ρj, λMax(�ρj)) pairs are gathered, the weighted least-squares pro-
cedure from Sec. 2.2 is used to fit the data. The ROM consists of a
third-order polynomial and an additional basis proportional to 1/�ρ,
which is introduced to capture the rapid growth of λMax as �ρ goes to
zero. The ROM is obtained by fitting a fourth-order polynomial to
(�ρj, �ρjλMax(�ρj)) and lowering the degree in each term by 1. Figure 1
shows that the proposed form of the ROM improves the quality of
the fit compared to a fourth-order polynomial ROM.

3 Material Distribution via B-Spline
Tensor-product B-spline surfaces (cf. [29]) are used to distribute

the lattice structure over the macroscale geometry of interest.
Although this paper focuses primarily on distributions of �ρ, distribu-
tions of other material properties can be parameterized in a similar
manner. The value of �ρ at any point on the domain can be described
by the height of a two-dimensional open B-spline surface at the cor-
responding location, which is given by

�ρ(u, w) =
∑m
i=1

∑n
j=1

�ρi,jN
k
i (u)N

l
j (w) (8)

In Eq. (8), u, w∈ [0, 1] represent the parametric coordinates
of the point where �ρ is evaluated, m, n indicate the number of
B-spline control points, �ρij is the member of an m× n array
of control points, and Nk

i (u) and Nl
i (w) are basis functions with

degrees k and l, respectively. The parametric coordinates are
further determined from the physical coordinates (x, y) as follows:

u
w

[ ]
=

x/xMax

y/yMax

[ ]
(9)

Fig. 1 Worst-case stress ROM for the octet truss using a cubic
polynomial plus a 1/�ρ term (0.82% mean relative error) and a
fourth-order polynomial (13% mean relative error)
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where xMax and yMax for a rectangular domain are the maximum
dimensions in x and y, respectively. For a non-rectangular
domain, xMax and yMaxwill be the dimensions of the smallest bound-
ing box, whose lower left corner is at the origin. The array of control
point values dictates the shape of the surface, and they are desig-
nated as design parameters for the optimization.
Quadratic B-splines are used for the results in this paper, where

k = l= 3. To evaluate Eq. (8), the knot intervals to which u and w
belong are first identified. There are m− 2 and n− 2 knot intervals,
respectively, for the two parametric coordinates, which are distrib-
uted uniformly between 0 and 1. Let s and t denote the indices of the
intervals containing u and v, and let us, wt∈ [0, 1] be the local coor-
dinates of u and w within their respective intervals, then Eq. (8) is
equivalent to the following matrix equation:

�ρst(us, wt) =
1
4

u2s
us
1

⎡
⎣

⎤
⎦

T

MPstM
T

w2
t

wt

1

⎡
⎣

⎤
⎦ (10)

where

M =
1 −2 1
−2 2 0
1 1 0

⎡
⎣

⎤
⎦ (11)

Pst =
�ρs,t �ρs,t+1 �ρs,t+2
�ρs+1,t �ρs+1,t+1 �ρs+1,t+2
�ρs+2,t �ρs+2,t+1 �ρs+2,t+2

⎡
⎣

⎤
⎦

To motivate the use of B-splines, a simple 2D test was conducted
to study the effect of removing the artificial penalty in the traditional
solid isotropic material with penalization (SIMP) approaches to
topology optimization. The artificial penalty in SIMP makes inter-
mediate material densities inefficient, thus encouraging designs to
converge to solid and void regions. This penalty is imposed
because traditional subtractive manufacturing techniques produce
only fully solid material. However, advanced additive manufactur-
ing techniques have enabled the production of architected materials
that can be manufactured at intermediate densities. By removing the
SIMP penalty, the 2D test aimed to investigate the effect of allowing
intermediate densities. A simple cantilever beam example was set
up with a 20 × 32 element mesh and a downward load applied in
the middle of the free end of the beam. One optimization was con-
ducted with the typical SIMP penalty exponent of 3, and another
was conducted with a linear scaling (or a penalty exponent of 1).
Figure 2 shows the intuitive results that intermediate material den-
sities are structurally efficient when linear elasticity scaling is used
without an artificial penalty. The ability to effectively distribute
loads over a wider area while still obeying total mass constraints
is one of the primary potential benefits of multiscale design of
lattice structures. This result is similar to what has previously
been demonstrated in related works on variable thickness sheet
design (cf. [30,31]) and free material design (cf. [32,33]). The
primary distinction between the cited works and the present one

lies in the use of surrogate models for the stress-constrained
design of lattices, as well as the use of splines for reduced dimen-
sionality of the design problem.
The presence of smoother material distributions is encouraging

for the use of B-splines as the design representation since splines
can naturally represent smooth topologies with a much smaller
number of parameters than element-based approaches. Another
study was conducted with an identical loading case to Fig. 2(b),
but with a 10 × 10 field of control points as design parameters.
Figure 3 illustrates the result of this investigation. The two
designs are comparable both visually and in terms of the resulting
structural compliance. For the finite-element mesh resolution of
20 × 32 used here, this translates to a reduction by more than a
factor of 6 in the number of design parameters. Even larger dimen-
sionality reduction would be achieved in cases where the analysis
requires a finer mesh resolution. However, lattice unit cell geome-
tries will all scale differently with relative density. Depending on
the unit cell selected and the loading case applied, the optimal
design may still have sharp changes in topology. In these cases,
increasing the control point resolution for the B-spline surfaces
would be necessary to converge toward the true optimal design.
A control mesh refinement study is included in Sec. 5.1 to deter-
mine the appropriate number of design parameters.

4 Simulation Framework
This section describes the computational design workflow for a

functionally graded structure filled with lattice unit cells of a given
type. Two types of objectives are considered in this paper to mini-
mize the compliance integrated over the structural domain, Ω:

min
P

∫
Ω

1
2
STM�ϵdΩ (12a)

or to minimize the total volume fraction of the material over the
domain:

min
P

∫
Ω
�ρdΩ (12b)

where the design parameter P is an array of size mn flattened from a
matrix of size m× n containing the values of �ρi,j from Eq. (8). Each
optimization is subject to some or all of the following constraints:

0.02 ≤ �ρ ≤ 1.0 (13a)

∫
Ω
�ρdΩ ≤ VMax (13b)

λMaxSM < σY (13c)

∇ · SM + F = 0 (13d)

SM = CH�ϵ (13e)

Fig. 2 Cantilever beam with optimized material distribution
where the density in each element is varied independently:
(a) solid-void distribution via the SIMP penalty, i.e., E∝ ρ3, with
an optimized compliance of 52.36 and (b) smoothly graded distri-
bution using E∝ ρ, with an optimized compliance of 39.18

Fig. 3 Cantilever beam with optimized material distribution via
B-spline: (a) material distribution using 10× 10 control points,
with an optimized compliance of 39.85 and (b) the B-spline
surface whose height describes the material distribution in (a)
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Equation (13a) imposes a physically realistic upper bound of
100%on the relative density and a lower bound of 2% based onman-
ufacturability considerations. Equation (13b) defines a material
budget for the optimization where VMax is the maximum volume
fraction of the full structure. Equation (13c) is the stress constraint
defined based on the worst-case stress ROM proposed in Sec. 2.3.
Equation (13d ) is the partial differential equation (PDE) constraint
given by the structural equilibrium equation in terms of the homog-
enized stress and strain. Equation (13e) defines the homogenized
constitutive relationship based on the ROM in Sec. 2.2. The
readers are reminded that both λMax and ℂH are spatially varying
quantities, which are functions of �ρ, which is in turn a function of
P. In this paper, the material field distribution to be optimized is
2D, and this planar design field is extruded to allow the analysis of
full 3D lattice structures that are of constant density in the third
dimension.
The optimization problem is solved numerically using the

interior-point algorithm embedded within the fmincon function
in MATLAB. Thanks to the reduced dimensionality of the design
problem, gradients of the objective and any nonlinear constraints
with respect to P can be computed via finite-difference without
incurring a significant cost. This feature simplifies the use of the
off-the-shelf commercial software in the optimization pipeline.
For the results presented here, ABAQUS is used to enforce the
PDE constraint in Eq. (13d ) by performing a structural analysis
at each design iteration. Equation (13e) is implemented in
UMAT for user materials. During a finite-element simulation,
the values of �ρ are needed at the Gauss quadrature points of
each element, where the constitutive relationship is used to
compute the stress from the strain. At each quadrature point, �ρ
is first determined from Eq. (8) as a function of its location and
the B-spline control point values. The constitutive ROM in
Sec. 2.2 is then evaluated to determine the local stress–strain rela-
tionship for the given value of �ρ. Likewise, for Eq. (13c), the value
of �ρ at each Gauss quadrature point is used to evaluate λMax at the
same point according to the worst-case stress ROM from Sec. 2.3.
This evaluation is implemented in the post-processing user subrou-
tine URDFIL, in which the value of �ρ and the magnitude of the
homogenized stress, ‖SM‖, are queried for each quadrature point
to predict the worst-case stress λMax‖SM‖ in the underlying mesos-
tructure. The subsequent sections provide more detailed dis-
cussions on the numerical treatment of the density constraint in
Eq. (13a) and the volume fraction calculation in Eqs. (12b) and
(13b), the stress constraint in Eq. (13c), and the beam and
L-bracket geometries on which the material distribution is
optimized.

4.1 Density and Volume Constraints. This section describes
the implementation of Eqs. (13a) and (13b) as linear inequality con-
straints. For the density constraints in Eq. (13a), simple box con-
straints on the design parameters P are insufficient to bound the
pointwise values of �ρ due to the implicit relationship between �ρ
and P through the B-spline parameterization. It must therefore be
enforced as an additional set of constraints.
To define the linear constraints corresponding to Eq. (13a), it can

be realized from Eq. (8) that although �ρ varies nonlinearly in space
or with respect to the parametric coordinates (u, w), �ρ depends lin-
early on P for a fixed (u, w). In other words, let �ρuw ∈ RN×1 be an
array of density values for all quadrature points on the
finite-element mesh, it is possible to define a coefficient matrix
Nuw∈RN×nm such that

�ρuw = NuwP (14)

The entries in Nuw can be derived analytically from Eqs. (9) and
(10). In the case of this work, they are determined numerically by:
(1) setting one entry in P to 1 at a time with all remaining entries
equal to 0 and (2) evaluating �ρuw via Eq. (8) to obtain the entries
of Nuw in the corresponding column. This procedure is executed

offline prior to the optimization and the results stored. Using
Eqs. (14) and (13a) is enforced discretely by

0.02 − NuwP ≤ 0,

NuwP − 1.0 ≤ 0
(15)

The left-hand side of Eq. (13b) is evaluated via numerical inte-
gration in a finite-element simulation. It is a weighted sum of the
relative density values in �ρuw for all Gauss quadrature points on
the domain. Given the linear relationship between �ρuw and P in
Eq. (14), the total volume fraction of the structure, V, also
depends linearly on P. The linear relationship is given by

V = NVP (16)

where NV∈R1×nm is the weighted sum of each column in Nuw or
the numerical integral of ∂�ρ/∂P over the entire structure. Equation
(16) is used to define the objective function in Eq. (12b). It is also
used to enforce Eq. (13b) as a single linear inequality constraint
given by

NVP − VMax ≤ 0 (17)

4.2 Aggregated Stress Constraints. The stress constraint in
Eq. (13c) must be independently satisfied at each Gauss quadrature
point in the domain, at which the stresses are computed in a
finite-element simulation. This results in a large number of nonlin-
ear constraints, which could hinder the optimization convergence.
This issue is addressed by replacing a pointwise evaluation of
Eq. (13c) with an aggregation function which averages the discrete
stress values over a small region on the finite-element mesh. For a
domain that is divided into NR regions, there would be NR stress
constraints. Let q= 1, …, NR be the indices of the regions and Qq

be the total number of Gauss quadrature points in the qth region,
the aggregation function is given by

1
Qq

∑Qq

p=1

R λMax‖SM,p‖
σY

− 1

( )
< Stol (18)

where Stol is a small positive tolerance, ‖SM,p‖ is the magnitude of
the homogenized stress at the pth quadrature point, and R is a
smooth hinge function given by

R(ξ) =

β(1 + ξ), ξ < 0

β[exp (100αξ) − 100αξ + ξ], 0 ≤ ξ < 0.01

β[A(ξ − 0.01) + B] ξ ≥ 0.01

⎧⎪⎨
⎪⎩

A = 100α exp α + (1 − 100α),

B = exp (α) + 0.01(1 − 100α).

(19)

The smoothness of R at the hinge and its slope for ξ < 0 are
respectively controlled by parameters α and β. The hinge function,
as shown in Fig. 4, takes on a small value when Eq. (13c) is satisfied
at the point p in region q. As a result, the value of Stol in Eq. (18)

Fig. 4 The smooth hinge function
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controls the amount of stress constraint violation in each region.
Suitable values of α, β, and Stol, along with the number and size
of the NR regions dividing the domain, determine how tightly the
stress constraint is satisfied over the structure. For the results pre-
sented in this paper, α= 600 and Stol= β= 4 × 10−6 are chosen
with a suitably large NR such that the maximum worst-case stress
does not exceed the yield stress by more than 1–2%, while ensuring
smooth convergence of the optimization. It should be noted that the
worst-case stress is inherently conservative and that a safety factor
could be added to compensate for the small constraint violation.
Alternatively, a tighter control of the local constraint satisfaction
could be achieved by adaptively tightening Stol over the course of
the optimization as proposed in Ref. [34].
For this work, the regions are chosen to be those formed by inter-

secting the knot intervals of the B-spline representation of the mate-
rial field. This is illustrated in Fig. 5. For the choice of B-spline
parameterization described in Sec. 3 and more specifically
Eqs. (9) and (10), densities everywhere within each region
indexed by s, t are determined by the set of 3 × 3 control points
with indices from s to s+ 2 and from t to t+ 2. As examples,
Fig. 5 highlights two regions along with the control points respon-
sible for the density variation within each region. Dividing the
structure in this manner makes it easier to satisfy the stress con-
straint globally during optimization.

4.3 Cantilever Beam Problem. The design workflow is dem-
onstrated with an extruded cantilever beam in 3D. The beam, shown
at the top of Fig. 6, is of rectangular shape with a dimension of 30 ×
5 × 2.4 m. The constituent material for the graded lattice is assumed
to be aluminum, which has Young’s modulus of 68.9 GPa, Pois-
son’s ratio of 0.33, and a yield strength of 276 MPa. A surface trac-
tion of 25 MPa is applied over the middle 16% of the beam
cross-sectional area, which is highlighted on the right side of
Fig. 6. All optimization studies of the cantilever beam in this
paper are subject to a volume constraint, VMax, of 40%.
The domain and the loading exhibit anti-symmetry about the

mid-plane in y, which can be leveraged to reduce the costs of the
structural simulation and design. Anti-symmetry in y means that
the y-displacements are fully symmetric in the top and bottom
halves of the domain, whereas the x- and z-displacements are,
respectively, symmetric in magnitudes but opposite in signs. The
simulation of the full domain can therefore be reduced to the top
half of the geometry above the symmetry plane, as long as appropri-
ate boundary conditions are imposed on the symmetry face. The
resulting domain with the applied boundary conditions is shown
near the bottom of Fig. 6. On the yz-face at x= 0, standard
clamped boundary conditions (ENCASTRE BC in ABAQUS) are
applied where all displacement components are fixed at zero. On
the opposite face at the free end of the beam, a downward surface
traction is applied over the bottom 8% of the halved beam cross

section. The anti-symmetry condition (YASYMM in ABAQUS) is
enforced on the xz-face at the bottom of the halved beam, where
the x- and z-components of the displacements are set to zero.
Symmetry in the material field is additionally enforced. Let there

be i= 1,…, m control points along the length of the beam and j= 1,
…, n along the height. Let j= 1, 2 further denote control points
closest to the symmetry plane. Then, it can be shown by mani-
pulating Eqs. (9) and (10) that a zero gradient of �ρ across the sym-
metry plane can be ensured by setting �ρi,1 = �ρi,2 for all i= 1, …, m.
This assumption also results in a total of m(n− 1) design para-
meters. Section 5.2 validates the anti-symmetry condition on
a uniform and a compliance-minimized density distribution,
respectively.

4.4 L-Bracket Problem. The present workflow is additionally
demonstrated on an L-bracket geometry that is commonly used
to benchmark stress-constrained structural topology optimiza-
tion methods. In this case, the material distribution on the L-
bracket is optimized without modifying the geometry, providing a

Fig. 5 Regions formed by the knot intervals of anm×n grid of control points, which
are also the NR regions for enforcing the stress constraint, i.e., NR= (m− 2)(n−2)

Fig. 6 The full cantilever beam geometry and the halved geom-
etry after exploiting the anti-symmetry of the domain. Directions
of the coordinate axis and the location of the origin are indicated
on the left.
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comparison between the present approach and the classical solid-
void design approaches. The geometry of the L-bracket is illustrated
in Fig. 7 along with its dimensions and boundary conditions. The
L-bracket is clamped at the top (ENCASTRE BC in ABAQUS). A
surface traction of 100 MPa in the downward or negative y direction
is applied to the area highlighted on the bottom right, which is 1 ×
1 m. The geometry is discretized by elements of size 1 × 1 × 1 for
structural analyses. The constituent material for the lattice is alumi-
num as in the cantilever beam problem.
Figure 8 illustrates the B-spline parameterization of the material

field. A B-spline grid of resolution 10 × 10 is used, which overlays
the L-bracket geometry. Control points in gray do not contribute to
the relative density in any part of the structural domain. Thus, they
are excluded from the set of design parameters. Figure 8 also shows
the NR regions for the aggregated stress constraints in the refined
grid on the bottom left of the figure (also shown in purple in the
electronic version). The original regions formed by the knot inter-
vals, as shown in Fig. 5, are refined in both x and y to ensure that

the size of each region is small enough to achieve tight control of
the largest stress in each region. There is a total of 84 design param-
eters and 175 stress constraints.

5 Results
To demonstrate that the proposed framework can be used to

design for different mesostructures, two types of lattice unit cells
are considered for the optimization problem outlined in Sec. 4:
the octet truss [35] and an alternative mesostructural architecture
designed to have a higher normal stiffness but lower shear stiffness
compared to the octet truss [23]. Geometries of the unit cells are
illustrated in Fig. 9. Expressions for the constitutive and worst-case
stress ROMs are listed in Tables 1 and 2 for the two unit cell types,
respectively. Figure 10 further provides a visual comparison
between the properties of the two unit cell types by plotting the
ROMs from Tables 1 and 2 with the relative density on the
x-axis. In all cases, material constants in the homogenized constitu-
tive relationships are normalized by Young’s modulus of the con-
stituent material. Results in this section are organized into four
parts. Section 5.1 investigates the appropriate number of control
points to be used in subsequent studies. Section 5.2 verifies the anti-
symmetry assumption. Section 5.3 includes the stress-constrained
compliance minimization results for the octet truss. These results
are then compared with compliance-minimized designs using the
alternative unit cell type with and without a stress constraint in
Sec. 5.4. Finally, Sec. 5.5 presents two optimized lattice designs
for the L-bracket based on stress-constrained volume minimization
and volume-constrained compliance minimization, respectively.

5.1 Control Mesh Refinement. This section investigates the
effect of control mesh refinement on the optimized compliance of
a functionally graded structure made of octet truss unit cells. The

Fig. 7 Geometry of the L-bracket with the applied boundary con-
ditions. The thickness of the structure in Z is 1 m.

Fig. 8 B-spline grid parametrizing the L-bracket geometry
shown with regions on the domain for stress constraint
aggregation

Fig. 9 Two types of unit cell geometries used as the mesostruc-
ture in the functionally graded lattice: (a) octet truss and (b) alter-
native unit cell with high normal stiffness

Table 1 ROM for the octet truss

C1111 = 1.5344�ρ3 − 0.3635�ρ2 + 0.3244�ρ − 0.0029
C1122 = 1.0011�ρ3 − 0.5136�ρ2 + 0.2301�ρ − 0.0033
C1212 = 0.0884�ρ3 + 0.2102�ρ2 + 0.0836�ρ + 0.0006

λMax = −33.54�ρ3 + 87.26�ρ2 − 86.17�ρ + 28.15 +
6.034
�ρ

Table 2 ROM for the alternative unit cell type

C1111 = 0.8786�ρ3 + 0.1951�ρ2 + 0.4064�ρ + 0.0003
C1122 = 0.8754�ρ3 − 0.2212�ρ2 + 0.0713�ρ − 0.0021
C1212 = 0.2445�ρ3 + 0.1932�ρ2 − 0.0255�ρ + 0.0001

λMax = −34.29�ρ3 − 8.544�ρ2 + 153.4�ρ − 171.8 +
63.04
�ρ
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stress constraint is not considered in this study. The optimized mate-
rial distributions for three combinations of control mesh resolution
are shown in Fig. 11. The control point resolutions are superim-
posed on the top half of the domain, on which the optimization is
performed. Recall that for the quadratic B-spline material represen-
tation used in this paper, the number of knot intervals is two less
than the number of control points in each direction.
It can be observed that the lowest resolution of 6 × 6 is able to

capture the general regions of high and low relative densities,
with optimized compliance within 8% of the optimized compli-
ance using 14 × 8 control points. At the intermediate refinement
level of 10 × 7 control points, the difference in optimized compli-
ance is less than 1.6% of that achieved with 14 × 8 control
points. The compliance of an unoptimized structure with a
uniform distribution of �ρ = 0.4 is 3.171 × 106 Nm. Therefore, in
all three cases, the optimization has improved the performance
of the structure by 70%. On the other hand, a larger number
of design parameters results in more optimization iterations due
to the need to explore a larger design parameter space. In this
case, in which the design gradients are approximated with finite-
differencing, increasing the number of design parameters results
in a further increase in the computational cost. Using more
control points to parametrize the material field thus offers dimin-
ishing returns in designing these functionally graded structures.
Based on the findings of this investigation, subsequent design
studies will be conducted with a control point resolution of 10
× 7 to achieve a smooth gradation in density with enough fidelity
to improve structural performance while keeping the dimension-
ality of the design space low.

5.2 Verification of the Anti-Symmetry Assumption. This
section verifies the anti-symmetry assumption by comparing the x-

Fig. 10 Plots of the ROM in Tables 1 and 2

Fig. 11 Density distributions on the full domain for compliance
minimization obtained with increasing control point resolutions.
The dotted lines indicate the knot intervals at each refinement
level: (a) 6 × 6 control points, compliance=9.838× 105 Nm;
(b) 10 ×7 control points, compliance=9.267× 105 Nm; and
(c) 14 × 8 control points, compliance=9.125× 105 Nm.
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and z-displacement fields on the halved domain with those obtained
via simulations on the full beam geometry. This study is conducted
on a uniform density distribution of 0.4 with results shown in Fig. 12
and on the compliance-minimized density distribution with 10 × 7
control points with results shown in Fig. 13. Contours in the first
column are displacements on the xy-face at z= 2.4, whereas contours
in the second column are displacements on the yz-face at x= 30. For
both density fields, the x- and z-displacements are equal inmagnitude
and opposite in sign, thus validating the anti-symmetry in the solu-
tion fields. Furthermore, the zero-contour of the displacement

fields on the full domain is aligned with the location of the symmetry
plane in all cases. Therefore, the anti-symmetric boundary condi-
tions enforced on the symmetry face of the halved domain are also
validated. Finally, a node-by-node comparison of all components
of the displacement shows that the simulation results on the full
domain can be reproduced using those on the halved domain with
appropriate sign changes to numerical precision.

5.3 Stress-Constrained Designs With the Octet Truss. This
section investigates various stress-constrained designs using the
octet truss unit cell and compares their performance to compliance-
minimized designs without the stress constraint. The optimal mate-
rial distribution for minimal compliance is independent of the
magnitude of the applied load at the free end of the beam. This
independence is due to the linear scaling between the load and the
displacements over the linear elastic domain. In contrast, a stress-
constrained design is load-dependent. For this reason, two different
load cases are considered: an end load of 25 MPa and 50 MPa,
respectively. Figure 14 shows the worst-case stress distribution, nor-
malized by the yield stress, on the compliance-minimized design
from Fig. 11(b). In Fig. 14(a), there is a small region of constraint
violation where the symmetry plane intersects the free end of the
beam, and the worst-case stress in the mesostructure is 1.188 times
greater than the yield stress of the constituent material. When the
applied load is increased to 50 MPa, regions near the top and
bottom corners of the fixed end are also failing, with the worst-case
stress in the mesostructure up to 2.376 times that of the yield stress.
Figures 15(a) and 16(a) show the compliance-minimized density

distributions from problem formulations that include the stress con-
straint for the two load cases. The corresponding normalized worst-
case stress distributions can be found in Figs. 15(b) and 16(b).
Figure 17 additionally plots the changes in the largest aggregated
stress constraint over the first 100 optimization iterations for both
the 25 MPa and 50 MPa load cases. It shows that the aggregated
stress constraint is satisfied within a reasonable number of iterations
in both cases. It furthermore shows that the constraint stops decreas-
ing once it reaches the threshold, Stol, in Eq. (18), which is shown as
a dashed line in Fig. 17. The optimization algorithm considers the
design feasible when the value of the aggregated stress constraint
is less than the threshold, which explains why the worst-case
stress slightly exceeds the yield stress in certain regions in
Figs. 15(b) and 16(b). However, in both cases, the local constraint
violation is small, and the feasibility of the structure has been
improved by incorporating the aggregated stress constraint as indi-
cated by the reduction in maximum worst-case stress.

Fig. 12 Verification of the anti-symmetry assumption via com-
parison with simulation on the full domain: uniform density dis-
tribution. (a) x-displacement field on the halved domain and the
full domain and (b) the z-displacement field on the halved
domain and the full domain.

Fig. 13 Verification of the anti-symmetry assumption via com-
parison with simulation on the full domain: compliance-
minimized density distribution from Fig. 11(b). (a) the
x-displacement field on the halved domain and the full domain
and (b) the z-displacement field on the half domain and the full
domain.

Fig. 14 Distribution of the worst-case stress normalized by the
yield stress on the compliance-minimized design with the octet
truss. Regions violating the stress constraint are shown in
black: (a) applied load=25 MPa; maximum worst-case stress is
1.188 times the yield stress of the constituent material and (b)
applied load=50 MPa; maximum worst-case stress is 2.376
times the yield stress of the constituent material.
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For the 25 MPa load case, the largest worst-case stress is reduced
to roughly 1.011 times the yield stress of the constituent material.
The mild stress constraint violation is due to the choice of the
aggregation function discussed in Sec. 4.2. It is possible to
enforce the stress constraint more tightly by varying the user-
specified parameters. Doing so, however, makes the optimization
problem more nonlinear and more challenging to solve. A con-
straint violation of 1% is reasonable given that the worst-case
stress is a conservative estimate and that a factor of safety is
often added in practice. The reduction in the maximum worst-case
stress is accompanied by an insignificant 0.02% increase in compli-
ance. This result is expected because only a very small portion of
the structure is failing in Fig. 14(a) without the stress constraint.
It is therefore not surprising that a small change in the density dis-
tribution is sufficient to ensure the structural integrity without sacri-
ficing much of the overall structural stiffness. In the case of the
50 MPa load, the optimized material distribution in Fig. 16(a) is
more distinctly different from that in Fig. 11(b). The largest worst-
case stress is reduced to roughly 1.017 times the yield stress of the
material. This is accompanied by a 13% increase in compliance
compared to the non-stress-constrained result. Both load cases
demonstrate the importance of considering structural failure in

the design of functionally graded lattice structures, as well as the
ability of the B-spline material parameterization to produce
designs satisfying different functional requirements.

5.4 Lattice Design With an Alternative Unit Cell. This
section investigates functionally graded lattice designs with the
alternative unit cell type described in Fig. 6(b) and Table 2. For a
lattice beam with a uniform density distribution of 0.4, the compli-
ance is 1.956 × 106 Nm, which outperforms an octet truss lattice
with uniform density by almost 40%. Figure 18 shows the opti-
mized density and normalized worst-case stress distribution
without enforcing the stress constraint. The optimized compliance
is 8.9% higher than that of the octet truss shown in Fig. 11(b),
and it is evident that the worst-case stress in many regions of the
structure is above the yield stress of the constituent material. This
result is not unexpected given the large bending moment experi-
enced by the high aspect-ratio cantilever beam. Figure 19 illustrates
the stress-constrained design using the alternative unit cell in terms
of the density and normalized worst-case stress distributions.
Figure 19(a) shows a density distribution that varies more gradually
than that in Fig. 18(a). This change reduces the largest worst-case
stress in Fig. 19(a) on the domain to 1.013 times the yield stress.
High stress areas indicated in black in Fig. 18(b) have also been

Fig. 15 Stress-constrained design with the octet truss and an
applied load of 25 MPa: (a) optimized density distribution with
stress constraint; compliance is 9.269× 105 Nm and (b) normal-
ized worst-case stress distribution on the optimized design
with maximum at 1.011 times the yield stress of the constituent
material

Fig. 16 Stress-constrained design with the octet truss and an
applied load of 50 MPa: (a) optimized density distribution with
the stress constraint; compliance is 4.203× 106 Nm and (b) nor-
malized worst-case stress distribution on the optimized design
with maximum at 1.017 times the yield stress of the constituent
material

Fig. 17 Convergence histories of the maximum aggregated
stress constraint

Fig. 18 Compliance-minimized design with the alternative unit
cell type (Fig. 9(b)) and an applied load of 25 MPa: (a) optimized
density distribution without the stress constraint; compliance
is 1.009×106 Nm and (b) normalized worst-case stress distribu-
tion on the optimized design with maximum stress at 7.94
times the yield stress of the constituent material
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substantially reduced. This is accompanied by a 22.5% increase in
the structural compliance compared to Fig. 18(a). A comparison
between Figs. 11(b) and 18(a), as well as between Figs. 15(a),
16(a), and 19(a) further shows that the proposed B-spline parame-
terization is able to produce visually distinct material distributions
and that the proposed design framework can accommodate mesos-
tructures with different mechanical properties.

5.5 Lattice Design on the L-Bracket. Two design studies are
conducted on the L-bracket geometry with the octet truss as the
mesostructure. The first is a stress-constrained volume minimization
problem. Equation (12b) is used as the objective, subject to all con-
straints in Eq. (13) except for (13b). The design is initialized with a
uniform density distribution of 40%. Figure 20(a) shows the opti-
mized density field. The resulting volume fraction is 37.5%, the
compliance is 3.348 × 107 Nm, and the maximum stress constraint
violation is approximately 0.66% of the yield stress. Distribution
of the normalized worst-case stress in Fig. 20(b) shows that the
stress constraint is satisfied in most parts of the domain. The
present study of the L-bracket differs from ones in the literature
(cf. [4,36]) in that changes in topology due to complete removal
of materials in a region are not permitted due to the lower bound

Fig. 19 Stress-constrained design with the alternative unit cell
type (Fig. 9(b)) and an applied load of 25 MPa: (a) optimized
density distribution with the stress constraint; compliance is
1.236×106 Nm and (b) normalized worst-case stress distribution
on the optimized design with maximum stress at 1.013 times the
yield stress of the constituent material

Fig. 20 Lattice design for stress-constrained volume minimiza-
tion: (a) optimized density distribution for the stress-constrained
volume minimization design; volume fraction is 37.5%; compli-
ance is 3.348×107 Nm and (b) normalized worst-case stress dis-
tribution on the optimized design with maximum stress at 1.0066
times the yield stress of the constituent material

Fig. 21 Lattice design for volume-constrained compliance min-
imization: (a) optimized density distribution for the volume-
constrained compliance minimization design; compliance is
3.050×107 Nm and (b) normalized worst-case stress distribution
on the optimized design with maximum stress at 1.819 times the
yield stress of the constituent material
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in the relative density. For this reason, the shape of the reentrant
corner is unaltered and is instead reinforced via adding materials
to that region. The use of B-spline parameterization further pro-
duces a smoother material field distribution compared to designing
with the densities of individual elements. Despite these differences,
the overall distribution of materials over the L-bracket as well as the
optimized volume fraction are comparable with the results reported
by similar studies in the literature.
The second study minimized the compliance with a volume con-

straint given by Eq. (13b), where VMax = 37.5% is the minimized
volume fraction from the previous study. In contrast with the first
study where there is no consideration of compliance, the second
study does not consider the maximum stress in the objective or in
the constraints. The optimized density distribution is shown in
Fig. 21(a), accompanied by the normalized worst-case stress distri-
bution in Fig. 21(b). The optimized compliance is 3.050 × 107 Nm,
which is 8.9% lower than the compliance from the first study as
expected. The decrease in compliance comes at the cost of multiple
regions at risk of structural failure, which are indicated in black in
Fig. 21(b). The largest worst-case stress on the L-bracket is almost
twice the yield stress of the constituent material.
The two studies in this section show that the present framework

produces designs that are comparable with those from the literature.
Furthermore, they demonstrate that the B-spline parameterization is
applicable to material field design on non-rectangular domains.

6 Discussions and Future Work
This paper describes a computational framework for design-

ing functionally graded lattices for stiffness and strength. The lat-
tices are composed of unit cell mesostructures. The analysis and
optimization of such multiscale structures are made computation-
ally tractable with the use of surrogate models. More specifically,
stress-constrained design optimization is enabled by ROMs charac-
terizing yield at the mesostructural level based on a worst-case
stress measure. A compact design representation that also allows
for control over the smoothness of the material field is achieved
via B-splines. The proposed methodology is demonstrated by opti-
mizing functionally graded lattices made of two types of unit cell
structures. It is shown that the present framework allows for the
design of structurally efficient lattices able to withstand different
design loads. The B-spline parameterization offers sufficient fidelity
to achieve significant improvements in structural compliance and to
produce visually distinct material distributions for different unit
cells and for design domains of different shapes.
In terms of future work, the proposed methodology can be

applied to explore multiscale lattice designs with a wider range of
unit cell types and in different application settings. Extending the
B-spline parameterization from 2D to a fully 3D design parameter
field would enable greater control over the design domain and
yield potential improvements in structural performance. Implement-
ing a workflow with analytical gradients of the material field would
also provide computational savings and potentially improved accu-
racy in the results. The stress prediction capability can be improved
by incorporating anisotropy into the yield model such that failure of
the mesostructure depends on the direction of the homogenized
stress tensor. Accuracy of the yield model may also benefit from
taking into account different smoothed joint geometries, which
could have an impact on the point of initial failure in the mesostruc-
ture. Finally, additional improvements in the structural efficiency
of the optimized lattice structures may be possible with a computa-
tional framework that concurrently designs the material field and the
shape/topology with suitable manufacturability constraints.
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