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Quantifying the Importance of
Solar Soft Costs: A New Method to
Apply Sensitivity Analysis to a
Value Function
This paper presents a new approach to build a decision model for government funding
agencies, such as the US Department of Energy (DOE) solar office, to evaluate solar
research funding strategies. High solar project costs—including technology costs, such
as modules, and soft costs, such as permitting—currently hinder many installations;
project cost reduction could lead to a lower project levelized cost of energy (LCOE) and,
in turn, higher installation rates. Government research funding is a crucial driver to
solar industry growth and potential cost reduction; however, DOE solar funding has not
historically aligned with the industry priorities for LCOE reduction. Solar technology
has received significantly higher research funding from the DOE compared to soft costs.
Increased research funding to soft cost programs could spur needed innovation and accel-
erate cost reduction for the industry. To this end, we build a cost model to calculate the
LCOE of a utility-scale solar development using technology and soft costs and conduct a
sensitivity analysis to quantify how the inputs influence the LCOE. Using these results,
we develop a multi-attribute value function and evaluate six funding strategies as possible
alternatives. We find the strategy based on current DOE allocations results in the lowest
calculated value and the strategy that prioritizes soft cost results in the highest calculated
value, suggesting alternative ways for the DOE solar office to prioritize research funding
and potentially spur future cost reduction. [DOI: 10.1115/1.4048456]

Keywords: sensitivity analysis for design, solar energy, sustainable design, decision
making

1 Introduction
Solar energy is an important part of the future carbon-free energy

portfolio; currently, the global share of total solar power generation
is expected to grow by a factor of ten in the next 20 years [1]. In the
United States, only 1.8% of total utility-scale electricity generation
was attributed to solar energy as of 2020 [2]. Government research
and development (R&D) funding is widely accepted as a crucial
driver to the growth of the solar industry and will remain important
to meet these aggressive solar projections [3] and, ultimately, our
global climate goals [4]. Within the US, the Department of
Energy (DOE) is the largest funder of energy research [5] and
responsible for administering R&D funds that “reduce the cost of
solar, increase the competitiveness of American manufacturing
and businesses, and improve the reliability of the grid” [6].
Efforts made by the DOE to accelerate solar innovation can not
only produce benefits to the country but can also catalyze additional
public and private funding efforts to advance the industry as a
whole.
While the DOE strives to gain benefits from every funding dollar

administered, a review of the Department’s funding practices notes
that the DOE does not have a consistent, transparent decision-
making process by which they allocate their funding and determine
expected benefits to be realized [5]. To this end, we present a new
approach to building a decision model for the DOE solar office to
evaluate solar R&D funding strategies. We use a multi-attribute
value function (MAVF) [7], an approach used by past researchers
in R&D funding decisions [8], and focus on cost reduction as the

main benefit to the DOE. While solar photovoltaic (PV) costs
have decreased in the US, a survey of over 100 solar professionals
reported that the largest barriers to implementing solar projects are
still “financial in nature” [9]. The DOE has indicated the importance
of supporting ongoing solar PV cost reduction in various ways, for
example: the SunShot initiative pledges to support projects to make
solar energy more affordable for Americans [10]; a dedicated team
of researchers at the National Renewable Energy Laboratory
(NREL), a DOE-affiliated national lab, investigates and presents
quarterly solar cost updates [11]; the Solar Energy Technologies
Office (SETO) states the goals of their office prioritize “sweeping
cost reductions” for solar energy [12]. We mirror this economic pri-
ority and inform our decision model parameters based on a solar
cost model that calculates the “levelized cost of energy” (LCOE),
as calculated by Eq. (1). Note that pertinent symbols in this equation
and subsequent equations throughout the paper are included in the
Nomenclature section for reference.

LCOE =
Total project costs

Total power generated
(1)

LCOE is a convenient measure to compare the cost competitive-
ness of different energy sources [13]; the DOE solar office uses
LCOE to measure how comparable solar energy is to more tradi-
tional fossil fuels and similarly, solar industry developers use
LCOE to measure the financial viability of their projects. Compar-
ing project costs alone is not a fair comparison. A 100 MW natural
gas plant will certainly cost more than a 250 kW rooftop solar
system. By “levelizing” the cost of energy calculations—in other
words, by dividing the total project costs by the total power gener-
ated—the resulting LCOE can be compared between energy
sources. To decrease the LCOE, research projects typically focus
on decreasing the numerator, or lowering total project costs.
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The solar development process is a complex, sociotechnical
system, and total project costs span both technology and human-
driven costs, also known as “soft costs.” NREL defines soft costs
as customer acquisition, permitting, interconnection, installation
labor, taxes, indirect costs, supply chain, and finance costs [14],
while technology costs are related to the hardware, such as panels
and inverters. Soft costs are highly variable, can account for
35%–63% of total project costs depending on project size [11]
and can even cause projects to completely fail. While the DOE
acknowledges soft costs as an important factor to solar development
[15], the recent DOE budget shows that funding decisions are not
being made to study soft costs at the same level as technology
costs. The 2020 US Congressional Budget shows that the DOE
received $228M for solar PV R&D and allocated 97.3% of the
funding to technology-related projects and 2.6% of funding to
soft cost-related projects [16]. When DOE funding allocations are
compared with the breakdown of solar project costs, as shown in
Fig. 1, we see the proportions between technology costs and soft
costs are significantly different.
In this paper, we build a decision model by considering both tech-

nology costs and soft costs to assist and potentially improve DOE
solar R&D funding decision-making. We focus on utility-scale
solar in our analysis, as NREL projects the majority of the growth
in US solar PV energy is expected to come from the utility-scale
sector and will dominate future solar economics [17]. We apply
two approaches from the JMD community, sensitivity analysis
and a MAVF, in a new way and address two themes of the JMD
Special Issue for Analysis and Design of Sociotechnical Systems:
(1) Risk and uncertainty in sociotechnical systems, by integrating
a sensitivity analysis to determine the decision model parameters;
(2) modeling the interaction of systems and organizational architec-
ture, by understanding the interactions between technology and sta-
keholders within the solar cost model and resulting decision model.
In the Discussion section, we again specifically bring up these
themes and how our findings inform them. Figure 2 presents the
workflow of this paper in a flowchart format.
First, we build a costmodel to calculate the LCOEof a utility-scale

solar development using both soft costs and technology costs as
inputs. Using industry data for the inputs, we conduct a sensitivity
analysis (SA) to quantify the effect each input has on the output
LCOE. Second, we use the results from the SA as weights for a
MAVF, which we use to calculate the value of six hypothetical
funding strategies the DOE solar office could adopt. For the decision
parameters determined in this analysis, the results from our model
show the strategy that closely matches the current DOE solar
funding allocation results the lowest calculated value, thus suggest-
ing the strategy is less desirable to the decision maker. The strategy
that prioritizes soft cost funding results in the highest calculated

value. We discuss these results and suggest future work to validate
the model. The decision model presented in this paper is a simple
approach to demonstrate how both technology and soft costs can
be considered in DOE solar R&D funding decisions, and future
work should include additional data gathering, model validation,
and exploration of advanced decision-making models.
The paper is organized as follows: Sec. 2 provides a background

of previous literature and Sec. 3 details the methods for building the
cost model, conducting the SA, and developing the decision model.
Sections 4 and 5 present the results and discussion, respectively,
while the paper ends with conclusions in Sec. 6.

2 Background
2.1 Utility-Scale Solar Development as a Sociotechnical

System. In this paper, we define the utility-scale solar development
process as a complex, sociotechnical system. The industry does not
have one definition of what size solar plant constitutes as
“utility-scale,” but for this paper, we follow the definition set by
Bolinger and Seel [18] as any system greater than 5 MWAC and
connected to the utility grid. Development at this scale requires
both a complex network of stakeholders as well as a multitude of
engineered systems [19]. The basic map of the stakeholders and
their relationships are mapped in Fig. 3. Contrary to other engineer-
ing design systems, stakeholders in large-scale energy systems
actively make independent decisions based on their own regulations
to optimize their objectives [20,21]. The technology subsystem that
stakeholders interact with includes solar PV panels, inverters,
mounting equipment, electrical equipment, and transmission lines.
While the final engineered design is ultimately responsible for deli-
vering the desired power output, success in development cannot be
achieved without the decision-making from the complex network of
stakeholders.
The developer manages all aspects of the project and carries out

the following steps at a minimum: (1) acquire sufficient land and
negotiate land lease(s); (2) secure investment for the project; (3)
submit permitting and other required paperwork; (4) submit an
interconnection request to the utility and upgrade any potential
grid equipment; (5) contract an Engineering, Procurement, and
Construction company (EPC) to design, build and procure materi-
als for the project; and (6) engage with the local government and
community. Developers use early-stage cost models to predict the
financial viability of the project, which ultimately helps them
decide whether to go forward with installation or not. Considering
both the “social” and “technical” factors of the utility-scale devel-
opment system can help better understand how the system works
[22] and can lead to a more appropriate solution [23]; however,

Fig. 1 US DOE 2020 solar R&D funding allocations compared with solar PV project cost
breakdown. US DOE data are from Ref. [16] and solar project cost data are Ref. [11].
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quantifying the diverse range of factors that affect large engineer-
ing systems can be challenging. Welfare economists have consid-
ered multiple factors, both soft cost and technology-related, to
quantify how large projects and policies will affect overall societal
welfare [24]. Cost-Benefit analysis, one of the most common tools
used for evaluating large engineering projects, quantifies all
factors of a system using monetary values [25,26]. We draw
from this technique and represent the inputs to our sociotechnical
system using monetary (or monetary-related) values in a cost
model. Our approach presents one way to quantify a diverse set
of factors that make up a complex system and gain insight from
the integrated perspective.

2.2 Decisions in Government Energy R&D Funding. Gov-
ernment R&D funding has been historically important in advancing
technical industries. DeGrasse Tyson lists some of the most impor-
tant technologies that came from US-funded R&D projects, such as
kidney-dialysis machines, global positioning satellites, and
corrosion-resistant coatings [27]. In the area of energy, an external
committee that evaluated over 20 years of DOE activities concluded
that “significant benefits” came from the DOE R&D programs in the
areas of fossil fuels and energy efficiency [28]. However as

mentioned in Sec. 1, the DOE does not have a consistent decision-
making process across offices by which they allocate their funding
to different areas and compare these expected benefits [5]. Each
DOE office currently performs its own independent assessment to
decide their funding allocation strategy, which is then collated by
the Secretary of Energy and submitted as a proposed budget to Con-
gress. Congress makes modifications based on factors that are out of
the DOE’s control and sets the budget for the year. A systematic
decision framework that the DOE could use consistently across
all offices to assess different funding strategies would benefit the
department greatly and perhaps increase the overall societal benefits
from the funded projects [5]. The goal of such a quantitative deci-
sion framework is not to necessarily to provide the DOE with one
optimal funding strategy, but rather to “shed light on the impact
of decisions, uncertainty, and preferences” to improve funding stra-
tegies [29]. While the model presented in this paper is intended to
focus only on solar R&D funding decisions allocated by the DOE
solar office, future work could adapt this approach for developing
consistent decision-making process across the DOE offices.
Decision frameworks to determine R&D funding allocation stra-

tegies have been studied in the management literature, see Ref. [8]
for a review of quantitative techniques and models that have been
used in previous funding allocation literature. Within the area of

Fig. 2 Flowchart representation of the method presented in the paper

Fig. 3 Network of stakeholders in utility-scale solar development
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energy, Santen and Anadon create a quantitative model to capture
decision-making under uncertainty for allocating R&D funds for
the electric power sector, focusing on solar PV technology invest-
ment planning [30]. Kurth et al. develop a decision model using a
MAVF to evaluate DOE funding strategies for carbon capture and
storage R&D [31]. We follow the general MAVF structure
and develop our model to use funding allocations (in USD) and
weights to calculate the value of each funding strategy for the
DOE solar office. We build on the work from the existing work
in Ref. [31] in two ways. First, while the Kurth et al. calculate
the weights of their MAVF using expert elicitation of technology
readiness levels, we present a mathematical method, SA, to calcu-
late weights that capture the industry preference of each attribute
while eliminating potential biases from expert elicitation. Second,
the work done by Kurth et al. and other decision frameworks for
energy R&D funding, to our knowledge, include technology in
their analysis, but do not consider the soft cost-related projects
that could influence their systems and funding. While studies
often qualitatively note the importance of studying the non-
technical barriers to energy deployment [29,32] and the need to
reduce these barriers [5], funding decision models generally do
not incorporate these non-technical aspects. We expand this
approach and incorporate both technical and soft costs into our anal-
ysis to be more representative of the solar industry during the solar
R&D funding decision-making process.
Building a decision framework for the DOE to use for R&D

funding strategies inherently assumes that R&D funding will trans-
late into some “benefit” to the DOE and to society; many studies
assume this benefit to be in the form of a cost reduction, although
it is important to note that determining this relationship is not
straightforward. An accepted practice to predict potential cost
reduction for energy technologies given R&D funding is expert
elicitation; for example, Curtright et al. and Bosetti et al. use this
technique for solar technology cost reduction prediction in the US
and European Union, respectively [32,33]. However, Anadon
et al. note that challenges still exist in the accuracy of the results,
including expert availability, time to conduct studies, and cognitive
biases from the experts [5]. Researchers have also looked back on
past data to draw positive correlations between R&D funding and
technology cost reduction in the aerospace industry [34], natural
sciences [35], and the energy industry [3,36]. Of course, these
results point toward positive correlations, not causations. While
these previous studies may suggest that government agencies will
reap cost reduction benefits from allocating funding dollars, it is
important to note the studies presented do not account for the non-
technical barriers that researchers and DOE alike have cited as
important to the solar industry.
Since our proposed decision model incorporates both technol-

ogy and soft costs, we assume that R&D funding for both types
of projects will result in cost reduction. As the basis for this
assumption, we look toward the documented need for additional
social science-related research funding dollars for climate change
mitigation detailed in Ref. [37], as well as an initial study con-
ducted by NREL researchers. Dong and Wiser explore data
from a DOE-funded soft cost program, the Rooftop Solar Chal-
lenge Program, responsible for streamlining permitting programs
for rooftop PV solar projects [38]. They found that cities with
more favorable permitting processes set by the program had
“lower-than-average” PV system prices. The results suggest that
funding this soft cost program positively correlates with soft
cost reduction. While this study is a promising start, this paper,
as well as previous studies that present a correlation between gov-
ernment R&D and cost reduction, are limited in scope, data avail-
ability, and cannot claim causation. In order to fully validate this
assumption, we would need to acquire additional industry data or
perform an expert elicitation, much like what has been done for
technology. See Sec. 5.2.1 for a discussion on future steps for
model validation. Overall, we believe this assumption and our
approach has merit, as we do not know of any energy governmen-
tal funding agencies that incorporate both technical costs and soft

costs into their decision framework using a mathematically vali-
dated approach.

2.3 Multi-Attribute Value Functions. Multi-attribute
decision-making (MADM) is an important tool used when consid-
ering a decision that has multiple criteria [7]; designers have drawn
on this area of decision theory to consider and quantify human
inputs into engineering decisions [39–41]. MADM approaches
have also been used in past literature to evaluate R&D funding stra-
tegies, particularly in the energy industry as detailed in Sec. 2.2.
Under deterministic conditions, we build value functions to calcu-
late a decision-maker’s preference; under uncertain conditions, we
build utility functions [39,42]. For this paper, we assume determi-
nistic conditions and represent funding strategy decisions with a
MAVF; while this approach may be simplistic initially, we begin
with these assumptions to demonstrate the new method proposed
in this paper and discuss next steps to incorporate uncertainty into
future decision models.
MAVFs are composed of multiple decision alternatives and each

alternative consists of multiple attributes; the outcome quantifies the
preference order in which the decision maker ranks the decision
alternatives. The “weighted sum” value function, shown in Eq.
(2), is a popular MAVF due to its ease of use [39]:

Va =
∑I

i=1

wirai (2)

wi is the weight for attribute i, rai is the score for alternative a and
attribute i, and each alternative has a total number of I attributes.
Equation (2) assumes the attributes are independent [42]. The
weights have the following property:

∑I

i=1

wi = 1 (3)

The decision-maker is not interested in the specific outcomes of
each individual value function, Va, but rather the resulting rank
order that comes from comparing the outcomes.
The challenge in using this model often lies in determining the

function parameters to align with decision-maker preferences
[43]. In particular, many strategies exist to determine the weights
of a weighted sum value function. Belton notes that many
common methods require preference elicitation from decision-
makers to identify which attribute is the most important and then
assign weights to the attributes accordingly [44]. Krishnamurthy
notes three methods to determine weights—direct estimation,
swing weights, and trade-off weights—all of which include the
decision-maker directly assigning values, ranking, or finding an
indifference point between attributes to assign weights [45].
While determining weights subjectively can capture the preference
of the decision-maker, this approach can lead to varied outcomes of
the value function [46], presenting a disadvantage to using a value
function that requires weights. Additional approaches exist to deter-
mining weights, see Refs. [39] and [47] for more details. In this
paper, we propose a method for determining the weights of a
MAVF that offers a mathematical approach to capturing preferences
of the solar industry through industry data in a cost model.

3 Methods
3.1 Building the Utility-Scale Solar Cost Model. While most

solar cost models are proprietary, we used cost model structures and
equations published by NREL and Lawrence Berkeley National
Laboratory [48–50] to build our model in PYTHON.1 Figure 4 pre-
sents the overall structure of the model. This section will explain
how the different components shown in Fig. 4 are calculated.

1The model is available at the public GitHub repository: https://github.com/syalsm/
SolarCostModel_Syal
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We assume the project technology is ground-mounted PV panels
with single-axis tracking and no battery storage. We choose the gen-
erator nameplate capacity, G, of the project to be constant at
100 MW for this analysis. This constant and other constant values
used in the analysis are detailed in the Appendix in Table 4.

3.1.1 Levelized Cost of Energy. The model calculates the
LCOE of the given solar PV project. LCOE (¢/kWh) is calculated
by the following equation used in the NREL System Advisor
Model (SAM), originally published in Ref. [51]:

LCOE =
C0 +

∑N
n=1

Cn

(1 + dm)
n

∑N
n=1

Qn

(1 + dr)
n

(4)

where dr and dm are the real and nominal discount rates, respec-
tively, C0 is the initial project investment, Cn is the annual project
costs in year n, Qn is the electricity generated in year n, and N is
the project lifetime. The following sections further describe each
component of the LCOE. A detailed table of the model inputs is
included in the Appendix in Table 5.

3.1.2 Discount Rate. The discount rate is a measure of the time
value of money and set subjectively by the investor of the project
[49]. Investors generally draw on their own past experiences and
advice from external consultants to appropriately value the cost of
capital of the project and set the real discount rate [52]. Therefore,
there is very little data published on the real discount rate values for
solar projects.
The nominal discount rate is calculated based on the real discount

rate and inflation, assumed to be ri= 2.1% as per the US Bureau of
Labor Statistics [53]. The following equation describes the nominal
discount rate calculation from [51]

dm = (1 + dr) × (1 + ri)−1 (5)

3.1.3 Initial Project Investment. The initial investment of the
project is calculated based on the following equation from the
NREL Cost of Renewable Energy Spreadsheet Tool (CREST) [48]:

C0 = CG + CB + CI + CD + CF (6)

where CG is the generation equipment cost, CB is the balance of
plant cost, CI is the interconnection cost, CD is the development
cost and fees, and CF is the financing and reserves cost. The gener-
ation equipment cost and balance of plant cost are calculated
follows:

CG = G ∗ (cP + cV ) (7)

CB = G ∗ (cM + cT + cW ) (8)

where cP is the cost per watt of PV modules, cV is the cost per watt
of the inverter, cM is the cost per watt of mounting equipment, cT is
the cost per watt of transmission equipment, and cW is the cost per
watt of wiring equipment.
The interconnection cost is input directly into the model. The

development cost is calculated in the following steps. The initial
development cost, CD1 is composed of permitting cost, Cp, land-
owner acquisition cost per watt, ca, and labor and construction
fees per watt, cl:

CD1 = CP + G ∗ (ca + cl) (9)

The developer hires an EPC to procure the materials and con-
struct the project. The EPC takes an overhead percentage, oEPC,
on initial development costs and equipment costs,

CD2 = CD1 + oEPC ∗ (CD1 + CG + CB) (10)

as well as an additional profit percentage, pEPC, on all development
costs and equipment costs.

CD3 = CD2 + pEPC ∗ (CD2 + CG + CB) (11)

The developer then adds contingency, c, on the all the develop-
ment costs incurred up to this point, as well as an overhead percent-
age, oDEV, to result in the final development cost and fees:

CD = CD3(1 + c + oDEV + c ∗ oDEV ) (12)

Fig. 4 Overview of cost model structure
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The financing cost includes lender fees at a rate of l on total bor-
rowed funds at percent debt of pD, construction interest at rate ic,
closing costs, Cc, and funding reserves, CR, required by lenders:

CF = (l ∗ pD ∗ (CG + CB + CI + CD))

+ (ic ∗ C0) + CC + CR
(13)

The funding reserves required by the lenders depends on the
monthly loan principal, pl, interest, il, and the average monthly
project cost. We assume the lender requires 6 months of
reserves, mr:

Cr = mr ∗ pl + il +
Cn

12

( )
(14)

3.1.4 Annual Project Costs. The annual project cost, Cn, is cal-
culated as per the CREST model [48]:

Cn = Fn + Vn + In + Pn + Ln + Tn (15)

where in year n, Fn is the fixed operations and maintenance cost
(O&M), Vn is the variable O&M cost, In is the insurance cost, Pn

is the project administration cost, Ln is the land lease cost, and Tn
is the tax cost. All sub-terms are calculated the same as the
CREST model, except one deviation: land lease cost is calculated
based on the land footprint required for the project and the annual
lease rate:

Ln = G ∗ E ∗ R (16)

where E is the number of acres per MW required for the project
and R is the annual land lease rate per acre paid to the landowner.

3.1.5 Annual Electricity Generated. The electricity generated
per year depends on how effective the solar panels are and how
sunny the location of the project is. The following equation is
from the CREST model [48]:

Qn =
G ∗ NCF ∗ 8760, n = 1
Qn−1 ∗ (1−d), n > 1

{
(17)

where NCF is the net capacity factor and d is the project degrada-
tion. The constant value of 8760 is equivalent to the number of
hours in 1 year. Recall that G, the generator nameplate capacity,
is set to 100 MW for this analysis.
To calculate theNCF, we deviate from the CRESTmodel and use

a more nuanced linear regression model proposed by Bolinger et al.
[50]:

NCF = 0.478 ∗ GHI + 0.0429 ∗ T
+ 0.2391 ∗ ln (ILR) + 0.2328

(18)

whereGHI is global horizontal irradiance to measure how sunny the
chosen location is, T is set to 1 or 0 based on if the technology is
tracking or not (set to 1 in this analysis), and ILR is the inverter

loading ratio, based on the size of inverters installed compared to
the size of the plant.

3.2 Quantifying Input Factors: Sensitivity Analysis. To
quantify the influence of each input on the LCOE, we conducted
a SA using the “One-At-Time” (OAT) method [54,55]. The SA
in our approach is not used as a probabilistic analysis of an engi-
neered quantity, but rather a way to quantify which inputs LCOE
is most sensitive to. We will use the results from this analysis in
the next section to develop the decision model used to compare
funding strategies.
The OAT method consists of assigning a base case value and

varying each input one at a time based on predetermined value
ranges. This method gives insight into the “magnitude and…direc-
tion” an input has on the output [54]. Using the notation from Bor-
gonovo and Plischke [54], the upper and lower sensitivities of the
output LCOE= f(x) are calculated by Eqs. (19) and (20), respec-
tively, based on an input xi and the vector x0 of base case values:

Δ+
i LCOE = f (xi + Δ+

i x, x
0
∼i)− f (x0) (19)

Δ−
i LCOE = f (x0) − f (xi + Δ−

i x, x0∼i ) (20)

The terms (xi + Δ+
i x) and (xi + Δ−

i x) represent the input xi whose
value is shifted by the respective amounts, Δ+

i x and Δ−
i x, and x0∼i

represents the vector of base case values for all other inputs ≠xi.
Due to the variable nature of solar projects, there is no one “base
case” to choose for each input; only high and low values were
reported in the data. For analysis consistency, we took the base
case to be the average value calculated from the given data range.
To illustrate an example, suppose we wanted to calculate the

LCOE sensitivities due to project degradation, d. The base case
value is 0.00625, the high value is 0.01 and the low value is
0.0025. All other inputs remain at their base case values. The
upper and lower sensitivities would be calculated in Eqs. (21) and
(22), respectively.

Δ+
d LCOE = f (0.01, x0∼d ) − f (0.00625, x0∼d) (21)

Δ−
d LCOE = f (0.00625, x0∼d) − f (0.0025, x0∼d ) (22)

This process is repeated for every input, resulting in a high and
low LCOE value based on the ranges of each input. We analyze
ten inputs: (1) real discount rate, (2) generation equipment cost,
(3) balance of plant cost, (4) interconnection cost, (5) development
cost and fees, (6) debt parameters, (7) fixed O&M, (8) land lease
cost, (9) net capacity factor, and (10) project degradation. These
numbered inputs and their sub-inputs are detailed in Table 5. Addi-
tionally, each input is categorized as a soft cost, technology cost, or
both, guided by Ref. [14].
An effective graphical representation of the results from an OAT

analysis is a tornado diagram, as introduced by Howard in Ref. [56].

Fig. 5 Multi-attribute value function structure for (a) airplane alternative example and (b) adaptation for this paper
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Inputs are sorted from largest to smallest differences and shown on
a two-way bar graph to illustrate the high and low LCOE values
from the SA. A tornado diagram showing our results is presented
in Sec. 4.

3.3 Decision Model: Multi-Attribute Value Function. We
use the results from the SA as well as inputs from the cost model
to build a MAVF as a tool to evaluate DOE solar R&D funding stra-
tegies (Eqs. (2) and (3) outlined in Sec. 2.3). We introduce our
implementation by comparison to an example familiar to the
design literature: suppose a company is deciding between different
airplane alternatives. Each airplane has a set number of attributes,
such as max speed, number of passengers, etc. that the company
wants to compare, and each attribute is assigned a weight based
on the relative preference of each attribute. The scores are assigned
based on the value of each attribute for each alternative (i.e., the
max speed for airplane 1, max speed for airplane 2, etc.). The
scores are often normalized to reduce dimensions when the units
of each attribute are different [43]. Finally, Eq. (2) is used to calcu-
late the value for each alternative and the alternative with the
maximum value is considered to be the most desirable or preferred
design. We adapt this method for the decision-making of the DOE
solar office. A visual version of this adaptation is presented in
Fig. 5.
Suppose the agency is deciding between different funding strate-

gies—focusing on technology, soft costs, or some combination of
both. We define these funding strategies to be the alternatives of
our decision problem. Each funding strategy has I attributes,
which we assume to be the 10 inputs analyzed in the SA, and
each attribute has a weight that is calculated from the results of
the SA. Recall from the previous section, the goal of our SA was
to quantify which inputs LCOE is most sensitive to. The results
identify which inputs can be used as “levers” to have the greatest
change in LCOE and can be prioritized in our decision model.
To calculate the weights, we perform the following calculations.

Using the results from Eqs. (21) and (22), we calculate the differ-
ence between the upper and lower LCOE sensitivities for each
input, i.

ΔiLCOE = Δ+
i LCOE − Δ−

i LCOE (23)

Next, we calculate the sum of all the differences in LCOE sensitiv-
ities.

∑
ΔLCOE =

∑I

i=1

(Δ+
i LCOE − Δ−

i LCOE) (24)

Finally, for each input i, we divide the result from Eq. (23) by the
result from Eq. (24) to calculate the weight for each attribute in the
decision model.

wi =
ΔiLCOE∑
ΔLCOE

(25)

For this demonstration, we define the score rai for alternative a and
attribute i to be the budget allocation to each attribute in $M. We
assume the solar office can allocate the money to each attribute
depending on their funding strategy. Recall that we categorized
each input based on the previous literature (see Table 5,
column 5); we used these categorizations to determine six hypothet-
ical funding strategies. For the more technology-focused strategies,
the technology costs were allocated a higher budget. For the soft
cost-focused strategies, the soft costs were allocated a higher
budget.
For our analysis, the first strategy is directly adapted from the

actual DOE solar funding allocation as per the 2020 congres-
sional budget [16]. The subsequent strategies range from Very
Technology-Focused to Very Soft Cost-Focused to test a wide
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variety of funding focuses. Table 1 shows the alternatives, attri-
butes, and scores used in the analysis:

4 Results
4.1 Sensitivity Analysis Results. The results of the SA are

presented in the tornado diagram in Fig. 6. The inputs are ordered
top to bottom from greatest LCOE sensitivity to least LCOE sensi-
tivity based on the OAT analysis.
The results show that LCOE is most sensitive to the interconnec-

tion cost with a difference of 3.37 ¢/kWh. Interconnection cost is
followed by net capacity factor with a difference of 3.27 ¢/kWh.
There is a significant decrease to the next input, generation equip-
ment cost. As per our analysis, LCOE is most sensitive to a soft
cost and a cost categorized as both technology and soft, and least
sensitive to two soft costs—debt parameters and real discount rate.
Note from the tornado diagram that net capacity factor and the

debt parameters have flipped lower and higher values; this indicates
the maximum values for these inputs resulted in lower values for
LCOE. All other inputs resulted in expected changes in LCOE.

4.2 Decision Model Results. From the results of the SA pre-
sented above, we calculated the weights of each attribute. Table 2
shows the weight for each attribute, in order of largest to smallest
weight, the same order as presented in the tornado diagram. The
cost classification—technology cost, soft cost, or both—is also pro-
vided for reference. For additional information about each attribute
and the range of values tested in the SA, please refer to Table 5.
Table 3 is a revised version of Table 1 presented in Sec. 3.3 to

include (1) the weight for each attribute and (2) the value calculated
for each alternative. Finally, Fig. 7 shows the results of the value
calculations for each alternative in a visual format.
From the results, we see that the Very Soft-Cost-Focused strategy

yields the highest value. We also find the DOE allocation strategy,
the closest strategy to what is being used today in the DOE, yields
the lowest value calculation. The Very technology-focused and
equal-focused strategies yielded approximately equal values,
while both moderate strategies resulted in increased value from
the DOE strategy.

5 Discussion
5.1 Sensitivity Analysis Discussion. The results of the SA

show the LCOE is most sensitive to interconnection cost and net
capacity factor; these results align with the anecdotes shared by
developers and utilities. We received these perspectives through
interviews that were conducted via phone and e-mail, with
follow-up questions sent by e-mail. Note that the interviewees did
not wish to have the conversations documented, as is often the
case with proprietary competitive information. Both stakeholders
noted the initial strategy for project development often starts by
finding the sunniest locations (higher net capacity factor) with the
greatest access to existing interconnection infrastructure (lower
interconnection costs), as these factors are most important for deter-
mining project costs and development. The outcome of the SA
mirrors these priorities and offers insight into how and where
developers and utilities build solar projects. If a land parcel is avail-
able in a sunny region but has minimal grid infrastructure around it,
a project may not be financially worth designing there.
As per the analysis, the LCOE is least sensitive to the debt param-

eters and real discount rate. Securing financing is crucial to devel-
opers to move forward with project; however, the investor-set
values available to developers, such as debt term, discount rate,
and debt percentage, may not be a large enough range to make a sig-
nificant impact on the final LCOE. This analysis does not capture
the nuances of these inputs and their full effects on solar project
developments; contrary to our results, securing financing can

Fig. 6 Tornado diagram of solar cost model inputs

Table 2 Weights of each attribute determined by sensitivity
analysis, in order of largest to smallest weight, and cost
classification

Attribute Classification Weight

Interconnection Soft 0.274
Net capacity factor Both 0.266
Generation equipment cost Technology 0.102
Land lease cost Soft 0.076
Development cost and fees Soft 0.071
Fixed O&M Technology 0.070
Project degradation Technology 0.056
Balance of plant cost Technology 0.045
Debt parameters Soft 0.028
Real discount rate Soft 0.013
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make or break a project’s future. However, the analysis does
suggest that developers may not have as much option in controlling
these costs to lower their project LCOE and may want to focus their
efforts to decrease costs in other areas of development.
The analysis shows the inputs with the largest numerical ranges

yielded higher LCOE sensitivity. The input ranges used in the
OAT analysis were defined by industry literature for past
utility-scale solar projects; this result suggests the inputs with the
largest cost ranges either (1) are the least well-known and vary
based on the project circumstances or (2) have additional uncer-
tainty/risk factors to consider. External factors can make an input
“more important” to project development but would not be captured
by the OAT method. For example, generation equipment cost can
widely vary based on manufacturing, shipment and procurement
logistics, and the ever-changing domestic and foreign politics that
govern the solar PV market. The analysis shows this input is the
third in the order of LCOE sensitivities, which could be explained
due to the many external factors listed above. In contrast, develop-
ment cost and fees, an input composed of soft costs such as permit-
ting and labor, appears to be low in the order of LCOE sensitivities as
per the OAT analysis; this result can be explained due to the smaller
data range compared to interconnection cost and generation equip-
ment cost. However, it is well-known in the industry that permitting
issues can cause unexpectedly large time delays, cost increases, and
even project failures, which can be caused by any number of external
factors such as community backlash, lack of engagement, or unin-
formed local governments. These trends were not observed in the
available quantitative data, thus is not captured in our analysis.
Exploring the uncertainty and risk within these systems is important
and we suggest future work to quantify these unexpected costs and
delays using additional data mining and probabilistic modeling.

5.2 Decision Model Discussion. To calculate the value of the
six hypothetical funding strategies, we integrate the results of the
sensitivity analysis as weights, cost model inputs as attributes,
and funding strategies as alternatives. Each alternative serves a
strategy that the DOE solar office could adopt. The strategy that
allocated funding based on the current DOE budget resulted in
the lowest value in our analysis. This result suggests regardless of
soft costs and technology costs, the DOE solar office is not priori-
tizing their funding allocation based on the factors of utility-scale
solar development to which the LCOE is most sensitive. According
to the parameters in our model, redistribution of the funding to pri-
oritize factors that have a greater influence on LCOE may result in a
higher value for the DOE solar office.
In contrast, the Very Soft Cost-Focused strategy resulted in the

highest calculated value. The DOEmay gain higher value from allo-
cating funding that prioritizes soft costs. Examples of soft cost R&D
programs could be streamlined permitting processes, redesigned
community engagement strategies, data-backed initiatives to
improve land lease valuations and investor project valuations, and
stakeholder relationship improvement. Funding soft cost research
could lead to cost reduction, better system design, subsequent tech-
nology advancement, and decreased unintended consequences that
often plague developments. Modeling the interaction between
systems and the organizations in which they exist can help identify
these unintended consequences and lead to better results. For
instance, funding a project to develop a nationally administered
solar permitting process could decrease time for developers,
leaving budget open to purchase more efficient technology and
deliver higher power to the end users for the same cost. Addition-
ally, funding soft cost research could decrease the number of
costs that are incurred during a solar development project. The
factors that affect solar developments are truly interconnected and
advancement should be considered from all angles by stakeholders
and funding agencies alike for the greatest benefit.
In addition to the soft-cost focus, it is important to note that while

the “moderate” funding strategies do not offer the maximum value,
they do offer increased value compared to the current DOE budget.
These results suggest allocating funding to a more diverse range of
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solar project development factors, not just hardware costs, may
result in more value to the funding agency and in turn, may result
in cost reduction for the industry.

5.2.1 Decision Model Validation. An important next step to
this work is to validate the decision model and develop credibility
such that agencies, such as the DOE solar office, would trust this
decision model enough to use it when evaluating funding strategies.
While the input ranges used in the SA are grounded in published
industry data, the funding strategies tested in the decision model
are hypothetical and defined to test a range of alternatives. Future
work could apply this method to actual solar funding budgets and
understand the range of calculated values. Additionally, quantifying
the correlation between soft cost research projects and cost reduc-
tion in the industry can help substantiate the benefits of soft cost
funding allocation and validate the funding effectiveness assump-
tions in our model. Finally, developing model credibility is required
for the decision-maker to trust the results and use the model [57].
Future actions that could be implemented to build credibility
include (1) meetings with funding agency decision-makers, (2)
full transparency of the code developed in the analysis, and (3) an
interactive tool for decision-makers to be able to test the model in
a user-friendly way and customize their results.

5.3 Limitations and Future Work. While the analysis pre-
sented in this paper uses a simple decision-making model to evalu-
ate R&D funding strategies, the approach has limitations we would
like to acknowledge. First, the proprietary nature of the solar indus-
try has given us limited information to build a cost model. The
model for our analysis is based largely on sources that come from
National Laboratories. The models built by these institutions may
differ from the way a traditional solar developer might build a
cost model, which could potentially influence our results. We also
note that limited data for each input exists in the industry; the
data we used to define the input ranges was not comprehensive of
all solar projects in the US. Additional data may affect the results
of the SA and in turn, alter the weights used in the decision
model. We did not take into account correlations between inputs,
an assumption that may also be updated by additional data or
more sophisticated uncertainty quantification techniques. Similarly,

we categorized the inputs as soft costs and technology costs guided
by previous literature; however, many inputs may blur the definition
line and can be interpreted in different ways. Additional categoriza-
tions could lead to different decision model results.
Second, we chose to focus this study on utility-scale solar based

on the data available and the large growth potential in the United
States; however, it is known in industry that costs for smaller-scale
solar developments (residential or commercial) can be different
from utility-scale. This analysis did not take into account
smaller-scale solar developments and should be included in future
work to test the applicability of these methods across the solar
industry.
Third, we defined the boundary of our system to be a utility-scale

solar development; we acknowledge this system itself has many
subsystems for which we did not consider as its own sociotechnical
system. For instance, module cost is determined by a multitude of
factors that may range from manufacturing costs to material costs
and depend on technology, tariffs, and geopolitics. We did not gran-
ularize these subsystems in our analysis but predict further analysis
in this area would offer interesting insights to the solar industry to
expand on the findings in this paper.
Fourth, we did not include private sector funding or funding con-

siderations from other industries in our analysis. Private R&D
funding is important to the industry but difficult to find detailed
information on and is often catalyzed by public R&D funding.
Kavlak et al. found through their analysis of the solar PV cost reduc-
tions that public R&D funding for the solar industry remains impor-
tant and may offer the “major innovations” needed for the industry
where public funding usually focuses on incremental changes [3].
For this initial analysis, we chose to focus on public R&D
funding allocation in the solar industry; however, future iterations
of this design model should consider the effects of private R&D,
especially in the area of soft cost reduction. Public-private partner-
ships or “cost share” funding opportunities may be effective for
future soft cost projects. Additionally, other industries, such as con-
struction management, can also provide valuable lessons to the solar
industry for future model iterations.
Finally, the MAVF we used is based on deterministic weights,

does not take into account uncertainty [39], and may be limited
by the implications of Arrow’s Impossibility Theorem [42].

Fig. 7 Resulting value of each hypothetical funding strategy tested in the anal-
ysis. The funding strategy that is most focused on soft costs results in the
highest value of the strategies considered.
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Future work should explore expected utility theory when analyzing
an agency’s decision-making to produce more realistic results.
Additionally, we assume attributes to be independent for this anal-
ysis; however, in reality, independence may not hold. We chose to
conduct this analysis with a weighted sum model for initial results,
but suggest additional work using utility theory should be explored
in the future.

6 Conclusion
In this paper, we present a new approach to building a decision

model that can aid funding agencies, such as the DOE solar
office, in evaluating solar R&D funding strategies. We build a
solar cost model, composed of both technology and soft cost
inputs, to calculate the LCOE of a utility-scale solar development.
Using this model, we conduct a sensitivity analysis to quantify
the effect of each input on the output LCOE. Using these results
as weights, we develop a decision model using a multi-attribute
value function and evaluate six hypothetical funding strategies.
The results of the model suggest that allocating funding closest to
the current DOE solar funding strategy had the lowest calculated
value, thus less desirable to the decision-maker, while allocating
funding to prioritize soft costs resulted in the highest calculated
value. This suggests the DOE solar office could gain more value
from shifting funding dollars to cover more diverse areas like soft
cost projects. Aligning funding based on industry solar project
costs may offer benefits to the DOE and potential project cost
reduction.
The decision model presented in this paper requires validation to

be used in a real-world context and gain credibility with decision-
makers, such as the DOE solar office. Additionally, we suggest con-
ducting a deeper study of decision-making models under uncer-
tainty for future model iterations. Overall, this approach to
quantifying technology costs and soft costs in a sociotechnical
system and incorporating those costs into funding decisions can
be generalized to study other areas of design that are influenced
by people and technology. For future study, we see value in apply-
ing this approach to other systems to gain insights, drive innovation,
and potentially spur cost reduction.
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Nomenclature
c = developer contingency (%)
d = project degradation
l = lending fee (%)

E = acres required per MW (acres/MW)
I = total number of attributes
G = generator nameplate capacity
N = project lifetime (years)
R = annual land lease rate paid to landowners (USD)
T = type of tracking technology (1 for tracking, 0 for

fixed)
ca = landowner acquisition cost (USD/W)
cl = labor and construction fees (USD/W)
cM = mounting cost (USD/W)
cT = transmission cost (USD/W)
cP = PV module cost (USD/W)
cV = inverter cost (USD/W)
cW = wiring equipment cost (USD/W)
dr = real discount rate
dm = nominal discount rate
iC = construction interest rate (%)
iD = debt interest rate (%)
il = monthly loan interest (USD)

mr = required reserves (months)
oDEV = developer overhead (%)
oEPC = engineering, procurement, and construction

overhead (%)
pEPC = engineering, procurement, and construction profit

(%)
pD = debt percent (%)
pl = monthly loan principle (USD)
rai = score for alternative a and attribute b
ri = inflation rate
xi = value of input i used in sensitivity analysis
wi = weight of attribute i
C0 = initial project investment (USD)
CB = balance of plant cost (USD)
CD = development cost and fees (USD)
CF = financing and reserves cost (USD)
CG = generation equipment cost (USD)
CI = interconnection cost (USD)
Cn = annual project costs in year n (USD)
CP = permitting cost (USD)
Fn = fixed operations and maintenance cost for year n

(USD)
In = insurance cost for year n (USD)
Ln = land least cost for year n (USD)
Pn = project administration cost for year n (USD)
Qn = annual electricity generated by the plant in year n

(kWh)
TD = debt term (years)
Tn = taxes for year n (USD)
Va = value of alternative a
Vn = variable operations and maintenance cost for year n

(USD)
x0 = vector of base case input values
x0∼i = vector of base case values for all inputs ≠xi
f (x) = function to calculate output value of levelized cost

of energy
GHI = global horizontal irradiance (kWh/m2/day)
ILR = inverter loading ratio
NCF = net capacity factor

Δ+
i LCOE = upper sensitivity value of the output LCOE for input

i
Δ−

i LCOE = lower sensitivity value of the output LCOE for input
i

Δ+
i x = upper shift in input i’s value, used to calculate

sensitivity analysis of output
Δ−

i x = lower shift in input i’s value, used to calculate
sensitivity analysis of output

ΔiLCOE = difference between upper and lower LCOE
sensitivity for each input, i∑

ΔLCOE = sum of differences in LCOE sensitivities for all
inputs

2See Note 1.
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Appendix: Inputs for the Solar Cost Model In Tables 4 and 5, all dollar values reported are in 2018 US dollars and
all power values are reported in direct current (DC) units.

Table 4 Constant values

Symbol Input Description Assumed value Sources

– Type of technology The type of solar technology analyzed in the cost model Photovoltaic, single-axis
tracking, no storage

Choice of the authors,
designed to follow [58]

G Generator nameplate
capacity

Capacity of the solar plant 100 MW Choice of the authors,
designed to follow [58]

N Project lifetime The number of years a project will last 30 years [58,59]
ri Inflation rate Rate of inflation as per the US Bureau of Labor statistics 2.1% [53]
cW Wiring and electrical

cost
Cost of the electrical equipment required for the project 0.17 USD/W [58]

ca Landowner
acquisition cost

Cost to acquire the landowners required for the project 0.03 USD/W [58]

l Lender’s fee Fee required to the lender when taking on debt 3% [48]
NC Construction

duration
Number of months required for construction prior to
installation

6 months [58]

iC Construction interest
rate

Annual interest rate set for construction funds 4% [58]

CC Closing costs Other required costs to the developer for due diligence and
to lenders

0 USD [48]

mr Required reserves Number of months of reserve funds the lender requires
developers to have

6 months [48]

Pn Project
administration

Project management costs required to manage Power
Purchase Agreements or other activities related to the project

$0 [48]

– Insurance rate Rate of insurance required for developers to carry 0.4% [48]
– Owner is a taxable

entity?
Determine if the financial owner of the project is a taxable
entity

Yes [58]

– Federal tax credit for
solar

Tax credit offered by the US federal government for solar
technology

30% [60]

– Location of project The location in which the project is installed California, USA Choice of authors
– Depreciation The schedule on which the assets in the solar plant reduce in

value over time
5-year MACRS [58]

– Replacement Number of years between inverter replacement 12 years [58]
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