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Technology Evolution Prediction
Using Lotka-Volterra Equations

During the development planning of a new product, designers and entrepreneurs rely on
the prediction of product performance to make business investment and design strategy
decisions. Moore’s law and the logistic S-curve model help make such predictions but
suffer several drawbacks. In this paper, Lotka—Volterra equations are used to describe
the interaction between a product (system technology) and the components and elements
(component technologies) that are combined to form the product. The equations are sim-
plified by a relationship table and maturation evaluation in a two-step process. The per-
formance data of the system and its components over time are modeled by simplified
Lotka—Volterra equations. The methods developed here allow designers, entrepreneurs,
and policy makers to predict the performances of a product and its components quantita-
tively using the simplified Lotka—Volterra equations. The methods also shed light on the
extent of performance impact from a specific module (component technology) on a prod-
uct (system technology), which is valuable for identifying the key features of a product
and for making outsourcing decisions. Smartphones are used as an example to demon-
strate the two-step simplification process. The Lotka—Volterra model of technology evolu-
tion is validated by a case study of passenger airplanes and turbofan aero-engines. The
case study shows that the data fitting and predictive performances of Lotka—Volterra
equations exceed those of extant models. [DOI: 10.1115/1.4039448]
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1 Introduction

Technology evolution describes a change in a technology per-
formance over time. Technology evolution prediction interests
designers, entrepreneurs, and policy makers. Specifically, design-
ers rely on the technology evolution prediction to estimate the life
cycle of their product in order to make informed R&D decisions
[1,2]. Entrepreneurs adopt technology evolution prediction result
to classify the development phase of their product in order to
select appropriate business strategies such as performance maxi-
mization, sales maximization, or cost minimization [3,4]. Policy
makers compare the evolution curves of different technologies in
order to allocate the resources wisely through technology evolu-
tion prediction [5]. Of note, technology evolution prediction is
also called product performance prediction because any product
can be regarded as a technology [6].

The logistic S-curve model and the simple exponential model
(Moore’s Law) are two commonly used models in technology
evolution prediction [1,2,7,8], where technology evolution is
modeled as a standard S-curve and a simple exponential function,
respectively. The parameters in the models are estimated based on
past technology performance data. Future technology performance
is predicted by mathematical extrapolation.

Despite several successful applications, these models do not fit
technology evolution data in many cases [9,10]. Moreover, most
of the parameters in those two models are hard to associate with
the causal factors of technology evolution, such as R&D invest-
ment. Thus, the logistic model and Moore’s Law cannot identify
the factors shaping future technology performance and do not pro-
vide guidelines on how practitioners can influence performance.
Importantly, the models focus on how a technology evolves in iso-
lation and do not consider how it interacts with other technologies.
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In practice, a single standalone technology is rare. Most technolo-
gies are supported by other technologies [11]. If technology inter-
action is not considered in a prediction model, the prediction
result produced by the model may suffer significant error [12].

In this paper, a product is referred to as a system technology.
The system technology is realized through the integration and sup-
port of hardware and software [6], which are referred to as compo-
nent technologies. Here, the interactions between the system
technology and the component technologies and their impact on
performance are modeled by Lotka—Volterra equations.

To our knowledge, the successful application of Lotka—Volterra
equations in this manner is a new contribution to technology evo-
lution modeling and prediction. Unlike the logistic S-curve model
and Moore’s Law, Lotka—Volterra equations cover a variety of
curve shapes, which include the simple exponential curve and the
standard S-curve [13]. The parameters in Lotka—Volterra equa-
tions can be associated with causal factors (e.g., R&D investment,
government policy) of technology evolution, offering practitioners
useful insights to manipulate the future of system and component
technologies. Lotka—Volterra equations have interaction terms,
which represent the effect of technology interaction. The interac-
tion terms reveal the extent of the impact of different component
technologies on the performance of the system technology. They
allow designers and entrepreneurs to identify the components crit-
ical to system performance improvement and make important out-
sourcing decisions. The comparison between Moore’s Law, the
logistic S-curve model, and Lotka—Volterra equations is illustrated
in Table 1.

This paper presents methods to apply Lotka—Volterra equations
in technology evolution prediction. It is organized as follows:
First, the background of Lotka—Volterra equations is introduced.
Then, the equations are validated as a powerful tool in technology
evolution prediction through parameter interpretation and a
discussion of functional equivalence with accepted technology
evolution models. In the remainder of this paper, guidelines are
provided for practitioners to decompose a product and to model
the interaction between the system technology and the component
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Table1 Comparison among Moore’s law, logistic S-curve model, and Lotka—Volterra equations

Technology evolution model Curve shape

Parameter association Technology interaction

Moore’s law
Logistic S-curve model
Lotka—volterra equations

Simple exponential curve
Standard S-curve
Flexible

No No
No No
Yes Yes

technologies using a full set of Lotka—Volterra equations. The
equations are simplified by a relationship table and a maturation
evaluation process. Smart phones are used as an example to illus-
trate the two-step simplification. Subsequently, the data pretreat-
ment and data fitting technique for the simplified Lotka—Volterra
equations are presented and demonstrated through a case study of
passenger airplanes and turbofan aero-engines. The six steps to
apply Lotka—Volterra equations in technology evolution predic-
tion are summarized. The paper concludes with a brief discussion
of the contribution of the work presented here and future research
directions.

2 Lotka-Volterra Equations

Lotka—Volterra equations were first introduced by Vito Volterra
in the early 20th century to model population changes of sharks
and fish in the Adriatic Sea. The model has been expanded and
successfully applied in the fields of demography and ecology dur-
ing last century [14].

Pistorius and Utterback suggested studying the interaction
between two technologies by generalized Lotka—Volterra equa-
tions in 1997 [15]. The equations they introduced are

dN
- = anN - bnN2 + CnmNM (1)
dt

dM

=M - buM?* + CpyMN 2

where N(t) and M(t) denote two technology performances. The
derivatives dN/dt and dM/dt represent the performance change
rates of the two technologies respectively.

There are three terms on the right-hand side of the equal sign in
the Lotka—Volterra Egs. (1) and (2). Each of these terms has an
interpretation in community ecology [16] and corresponding anal-
ogies in technology interaction [17]. These interpretations help us
to associate each term with the causal factors of technology
evolution.

The first term in Egs. (1) and (2) represents unlimited growth
rate in community ecology. It originates from the breeding instinct
of species. In technology interaction, the term indicates the tech-
nology performance independent growth rate, which covers all the
stimulation factors except the influence from other technologies.
The stimulation factors include, but are not limited to, R&D
investment and government policy encouragement.

The second term in Egs. (1) and (2) describes the self-crowding
effect in a biological population. It is a negative term and arises
from ecosystem resource limitations (e.g., food and water). The
second term’s analogy in technology interaction is technical diffi-
culty. The term may establish a technical barrier (upper limit
value) for the technology performance when it compensates the
performance improvement effect arises from the first and the third
terms. The derivatives dN/dr equals zero in this case.

The third term in the equations is an interaction term. It denotes
the beneficial or detrimental effect from the other species in com-
munity ecology, and from the other technologies in technology
interaction. The term can be positive or negative. The value of the
parameters C,,, and C,,, captures the dependency between the
two species or, in our case, technologies.

The interpretations outlined earlier differentiate Lotka—Volterra
equations from other technology evolution models. Lotka—
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Volterra equations not only mark the position of a technology on
its life cycle but also offer practitioners useful insights to manipu-
late the future of the system technology through changes in com-
ponent technology performance. Moreover, Lotka—Volterra
equations can be reduced to a variety of mathematical functions in
simplified cases. The logistic model and Moore’s Law are special
cases of Lotka—Volterra equations [14,16]. The details of reducing
Lotka—Volterra equations to the logistic model and Moore’s law
are provided in the Appendix. Lotka—Volterra equations also
cover Gompertz, Bass, nonsymmetrical responding logistic, and
Sharif-Kabir models [13]. Further discussion on the functional
equivalence for Lotka—Volterra equations can be found in a book
chapter written by Cunningham [14]. The passenger airplane case
study in Sec. 4.3 also reveals that the fit and prediction perform-
ance of Lotka—Volterra equations exceed those of extant models.
These results validate Lotka—Volterra equations as a powerful tool
in technology evolution prediction.

Researchers have applied Lotka—Volterra equations in product
and firm competition [18-20], where the interaction terms are
negative (i.e., C,,, and C,,, in Egs. (1) and (2) have negative val-
ues), and the performance metrics are sales revenue or market
share. Based on an extensive review of the state of the art, the
successful application of Lotka—Volterra equations in the manner
presented here is a new contribution to system design and integra-
tion, technology evolution modeling, and technology evolution
prediction. In system design, technology performance is measured
by technical parameters such as speed, capacity, and efficiency or
combined parameters such as capacity per unit cost. The interac-
tion terms of Lotka—Volterra equations are positive in common
cases.

Pistorius and Utterback pioneered the application and solution
of Lotka—Volterra equations with positive interaction terms to bet-
ter understand technology interaction [17,21]. Due to the restric-
tion of computational power at that time, they used a numerical
method proposed by Pielou [22] in 1969 to solve Lotka—Volterra
equations and set the step length # = 1. Their solution shows oscil-
latory behavior in the mature phase of technology evolution. This
instability precluded this research stream from moving forward.
Fortunately, this instability problem could be solved by setting
smaller step length (e.g., #=0.1) with the computational power
today. In addition, Pielou’s method is a first-order difference
scheme for which the truncation error is O(h%). High order
Runge—Kutta methods (e.g., Dormand—-Prince method [23]) are
recommended here to improve the efficiency and accuracy for
solving Lotka—Volterra equations.

3 Two-Step Simplifications for Lotka-Volterra
Equations

The majority of modern engineered products are complex sys-
tems. For example, an aircraft consists of thousands of modules,
components, and elements. Solving the full set of Lotka—Volterra
equations for thousands of components is unnecessary in many
cases because several component technologies have negligible
impact on system technology performance growth. The two-step
simplification presented in this section helps users to identify
those negligible impacts and reduce the equations accordingly.

The product of interest is called a system technology here. As a
generic problem, the system can be viewed as the integration of n
different component technologies. Each technology performance
is modeled with its own equation. Thus, the full set of Lotka—
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Volterra equations includes n 4 1 equations (one equation for sys-
tem technology, and n equations for n component technologies).
The equation for the system technology has the form

dyo RN
o = oo~ boyy + Z Coiyoyi 3)

i=1

In Eq. (3), yo is the performance of the system technology, and y;
is the performance of the component technology i (1 < i < n),
where i and n are positive integers. ao, by, and C; are the constant
parameters for the independent growth term, the technical
difficulty term, and the interaction term(s), respectively. Each
component technology also has a corresponding equation similar
to Eq. (3). For example, the first component technology has the
equation as

d

yl — 2 . . .
= an — b1y +;C|,y1yl 4)

3.1 Step One: Relationship Table. More than one perform-
ance metric always exists for any system technology [24]. A table
can be used to illustrate the relationships between the system tech-
nology performance metrics and the component technologies. The
system performance metrics of interest appear in the first column
of the table, and those of the different component technologies
appear in the first row. The table is similar to the adjacency matrix
in graph theory [25]. An “X” is marked in a cell of the table if the
corresponding component technology has a significant impact on
the performance metric of the system technology. On the contrary,
the cell is left blank if the impact is assumed negligible.

Because the practitioner focuses only on one system technology
performance, a specific performance metric is chosen from the
column of the relationship table, and the X symbols on that row
are noted. If m X symbols appear on that row (1 < m < n), it
implies that m component technologies affect the system technol-
ogy performance. In this case, Eq. (3) is reduced to

dyo m
= Yo~ boyg + Z Coiyoyi ©)

where Yy is the system technology performance of interest.

3.2 Step Two: Maturation Evaluation. The number of
interaction terms for the system technology is reduced from » to
m after the relationship table simplification. To simplify
Lotka—Volterra equations further, the evolution curves of the m
component technologies are evaluated to determine whether a
component technology is mature when the system technology
starts to grow. The component technology performance y; has a
constant value during the evolution time range if it is mature. The
interaction Cy; term can be combined into the independent growth
ap term in this circumstance, so the corresponding interaction Co;
term is removed from Eq. (5), reducing it to

dyo =
= Yo~ boyi + Z Coiyoyi (6)

If there are p mature component technologies, only m — p interac-
tion terms are left in Eq. (6). Thus, the simplified Lotka—Volterra
equations include only m — p 4 1 equations rather than the origi-
nal n+ 1 equations after the two-step simplification.

3.3 Smart Phones Example. To illustrate the two-step sim-
plification method outlined earlier, smart phones are taken as an
example of system technology. The smart phone is decomposed
into five key component technologies: touch screen, CPU, inte-
grated circuit (IC), battery, and operating system. This example is
used only to demonstrate the simplification method. The
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technology evolution model is not developed because technology
performance data are unavailable. A detailed case study of passen-
ger airplanes that includes data fitting and analysis is provided in
Sec. 4.3.

The full set of Lotka—Volterra equations includes six equations
with the equation for the smart phone (system technology) having
the form

dyo 2
= doyo — boyg + Z Coiyoyi @)

i=1

The performance metrics of a smart phone include, but are not
limited to, speed to open an app, image resolution, heat dissipa-
tion, battery endurance, and weight. If desired, combined metrics
also can be considered, such as speed to open an app divided by
phone weight. A relationship table for a smart phone is shown in
Table 2. A significant impact from a component technology on
the system technology’s (smart phone) performance metric is
denoted by X in the corresponding cell.

If the speed to open an app is of interest, only the CPU and the
operating system have significant impact on this performance met-
ric. Through this process, the five interaction terms in Eq. (7) are
reduced to two terms by approximating C¢;, Co3, and Co4 to zero.

The performance of the operating system is constant if it is
assumed to be mature during smart phone evolution. This assump-
tion is used to demonstrate the simplification process. In this case,
ys is a constant, and the interaction Cys term is combined into the
independent growth a, term after the maturation evaluation
process.

Using the speed of a smart phone to open an app as an example,
the two-step simplification of Lotka—Volterra equations for the
system technology performance is illustrated in Fig. 1. The simpli-
fied Lotka—Volterra equations include only the following two
equations:

= apyo — boyg + Co2yoy> (8)

dyo

dt
ddlf = azys — bay; + Ca0y2y0 ©)
In Egs. (8) and (9), yo is the speed of a smart phone to open an
app, y» is the CPU performance (e.g., clock speed), Cy, term rep-
resents the impact of the component technology (CPU) on the sys-
tem technology (smart phone), and C, term represents the impact
of the system technology (smart phone) on the component tech-
nology (CPU). Of note, the C,o term may not equal the Cq, term.
These C terms are generally positive, but they may have negative
values in rare cases. For example, fast development of CPU leads
to more compact CPU design, thereby causing CPU to produce
more heat per unit area. This heat production has a detrimental
effect on the heat dissipation performance of a smart phone, lead-
ing to a negative C term in the system technology equation.

4 Data Fitting for the Simplified Lotka—Volterra
Equations

A structured method is presented in Sec. 3 to allow practitioners
to simplify the full set of Lotka—Volterra equations. This simplifi-
cation method becomes important as more detailed explorations
of complex multicomponent products are performed.

In this section, the simplified system—component interactions
are analyzed. The specifics of fitting the simplified Lotka—Volterra
equations to performance data of system and component technolo-
gies over time are discussed. A comparison between the abilities
of Lotka—Volterra equations and typical technology evolution
models to fit technology performance data and to predict future
system technology performance is explored through a case study
of passenger airplanes.
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Table 2 Relationship table for smart phone

Smart phone performance Touch screen CPU Integrated circuit Battery Operating system
Speed to open an app X X

Image resolution X X

Heat dissipation X X X X X
Battery endurance X X X X
Weight X X X

Speed to open an app/weight X X X X X

4.1 Dimensionless Treatment of Time History Data. Practi- dy; m—p
tioners may use different units for the same technical parameter d_zo = aoyy — boyy® + Z Coiyoyi (12)
i

(e.g., psi and MPa for pressure), which leads to different data fit-
ting results for the same problem. To avoid confusion, technology
performance data should be nondimensionalized before substitut-
ing into the simplified Lotka—Volterra equations for data fitting.
This treatment also helps practitioners compare the evolution
curves of different technologies. The nondimensionalized method
is borrowed from fluid mechanics [26]. Component and system
technology performances y; and y, are divided by corresponding
characteristic values Y; and Y as

SN

* 10
V=3 (10)
* Yo
=20 11
Yo Yo (11)

The characteristic value can be the start or maximum technology
performance, or the technology performance at a specific time. It
is recommended to choose the maximum performance or the per-
formance at current time as characteristic values Y; and Y. In that
way, system and component technologies performance data are
normalized within the same range (0, 1]. They will have the same
weight in the following data fitting process.

Dimensionless component and system technology performan-
ces y; and y; replace y; and y, in the simplified Lotka—Volterra
equations. For example, Eq. (6) is replaced by

The only unit in the simplified Lotka—Volterra equations is time ¢
after the dimensionless treatment above.

4.2 Data Fitting Process. The simplified Lotka—Volterra
equations model the interactions between one system technology
and m — p component technologies. They include m —p + 1 equa-
tions. Each equation has m — p + 2 unknown parameters (e.g., ay,
bp, and Cy; for the system technology performance equation).
There are (m —p+ 1)*(m —p +2) unknown parameters in total.
The initial value of each technology performance is also required
to solve differential equations. The first performance data points
(the initial or earliest known technology performance) of each
technology are used as the initial values of the simplified
Lotka—Volterra equations. The initial values also can be treated as
unknown parameters to improve the accuracy of data fitting. This
treatment leads to (m —p+ 1)*(m —p + 3) unknown parameters
for the simplified Lotka—Volterra equations.

The goal of the data fitting process is to search for the various
a, b, and C parameter values that minimize the sum of squared
errors between technology performance time history data and the
solutions of the simplified Lotka—Volterra equations. A trust
region reflective algorithm [27] or other optimization algorithms
[28] may be used for this purpose. As we know, the simplified

Original Lotka-Volterra Equation for System Technology

dy,

- %Yo~ boy§ + Co1Yoy1 * CozYoY2 + CozYo¥s + CosYoYa + CosYoYs

Smart Phone Touch
Speed to Screen
Open an App

CPU Integrated Battery

Operating
Circuit System

First Step Simplification — Relationship Table

dy,
o - %Yo~ by +C

Smart Phone Touch
Speed to Screen
Open an App

Cg1=0

M"‘ Coz2Y0Y2 +W+W+ CosYoYs

CPU Integrated

Co3=0 Cos~0

Battery  Operating
Circuit System

Second Step Simplification — Maturation Evaluation

dy, 5
F = QoY _boyo + COZ:yOyz +
Smart Phone CPU
Speed to
Open an App

yszconsta nt

CoursTy

Operating
System

Fig. 1 Two-step simplification of Lotka—Volterra equations for smart phone

speed to open an app
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Lotka—Volterra equations are a set of differential equations. The
analytic solutions for the equations are not available in a general
case. As stated above, Dormand-Prince method [23], which
belongs to Runge—Kutta formulae family, can be employed to
solve the equations numerically here.

The data fitting process above yields the optimum values of
parameters in the simplified Lotka—Volterra equations. These opti-
mum values are plugged into the simplified Lotka—Volterra equa-
tions, and performance predictions for the system technology and
each component technology are made by mathematical extrapola-
tion. These performance predictions enable designers to track the
product along its technology life cycle. In particular, practitioners
can identify when product performance reaches an upper limit and
estimate the remaining life of the technology. Importantly,
Lotka—Volterra equations also indicate the relationship between
the system technology and the component technologies. In the
equation for system technology (Eq. (12)), the values of the
parameters in the interaction terms (Cyp;) denote the degree of
impact of the specific component technology 7 on the system tech-
nology. A higher positive value of parameter C, reflects a greater
importance of the component technology i to the system technol-
ogy evolution.

From the viewpoint of product design and manufacture, the
component technologies with the highest Cy, values are identified
as the key features of the product (system technology). Designers
would likely develop and manufacture these key component tech-
nologies in-house, or at least establish a more synergistic relation-
ship (e.g., through joint R&D or cross-shareholding) with the
suppliers of these component technologies. Similarly, the compo-
nent technologies with the smallest C¢; values would be candi-
dates for outsourcing. Designers would likely choose the
commercial component technologies in the market with competi-
tive prices for these less impactful components. The continued
R&D for such low impact component technologies would also
likely be reduced or even terminated in the company. A good
example of such outsourcing strategy is from Apple. Apple devel-
ops only the key components (e.g., 10s software and A6 chip) of
iPhone in its California plant. A great number of other compo-
nents are outsourced [29]. The outsourcing strategy saves time
and money for Apple (Cupertino, CA) during product develop-
ment and manufacture. Of note, these strategic design decisions
are typically made on the basis of designers’ qualitative analysis.
The model developed here allows designers to measure the signifi-
cance of each component technology through the parameter C;
values and make more informed decisions.

4.3 Case Study: Passenger Airplane and Turbofan Aero-
Engine. The dimensionless treatment and data fitting process are
demonstrated by the interaction between passenger airplane and
turbofan aero-engine as a case study in this section. The case
study also illustrates the ability of Lotka—Volterra equations to
model technology evolution and interaction. The model is com-
pared to currently accepted technology evolution models to dem-
onstrate its improved accuracy for technology evolution
prediction. Of note, the passenger airplane is supported by many
different component technologies (e.g., electronics, aerodynam-
ics) other than the aero-engine. Due to data limitation, only the
interaction between the passenger airplane and the turbofan aero-
engine is considered. This simplification may involve some pre-
diction error.

The passenger airplane is treated as the system technology. A
performance metric of passenger capacity-speed-range (km?/h) is
used. A turbofan aero-engine is the component technology. For
the engine, take-off thrust (kN) is the component technology
performance metric.

The time history performance data for passenger airglanes and
turbofan aero-engines during 1960-2010 are collected™ [30-32].

2We also collect data from Wikipedia: https://en.wikipedia.org
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The highest performance value of each data set is chosen as the
characteristic value for the passenger airplane and the turbofan
aero-engine performance in the given time period. To create a
dimensionless metric of performance value for system and com-
ponent technologies, the actual performance metric values are
divided by its associated technology’s highest value of the per-
formance metric.
In this case, the simplified Lotka—Volterra equations are

dy,

== a0 — boyy® + Corygy; (13)
dy;
dt

=ayy; — biy;* + Cioyiyp (14)

where y; is the dimensionless passenger airplane performance,
and yj is the dimensionless turbofan aero-engine performance.

The initial values of y; and y] are treated as unknown parame-
ters. Thus, there are eight parameters for the simplified
Lotka—Volterra equations Eqgs. (13) and (14). The trust region
reflective algorithm [27] is used to search for the optimum values
of the parameters. The optimization algorithm gives the equations
and initial conditions with optimum values of parameters as

*

dyg

r = 0.303y, — 0.557}732 + 0.260y5y} (15)

dyy o o —7 %2 —14 % *
o 0.0345y] — 1.18 - 10~ "y~ +3.55 - 10~ "y y, (16)
Yo(t=0) =0.0718 (17)
yi(t=0)=0.225 (18)

where ¢ =0 represents the start year of 1960.

The final data fitting result for the system technology perform-
ance (passenger capacity-speed-range of passenger airplane) is
illustrated in Fig. 2. The coefficient of determination R* for the sys-
tem technology time history data fit is 0.9742. By comparison, the
coefficient values of determination R®> are 0.7307 and 0.9389,
respectively, if the time history performance data are modeled by
Moore’s Law (Eq. (A4) in the Appendix) and the logistic model
(Eq. (A2) with b,/a,, = 1 in the Appendix). Thus, using R? as a mea-
sure of model fit, Lotka—Volterra equations have a greater accuracy
in modeling the technology performance evolution than those of
the existing and commonly accepted technology evolution models.

The prediction for passenger airplane performance is made by
mathematical extrapolation. Eqs. (15)—(18) predict that the pas-
senger airplane performance will reach 1.68 x 10'® km*h in
2040. This performance level is around 2.15 times of the Airbus
A380-800 performance. The double bubble D8 [33] is a candidate
to meet this prediction. Of note, the underlying assumption of this
prediction is that the environmental conditions for the system
technology evolution stay the same in the following years. In real-
ity, the values of parameters a, by, and Cy, are likely to be func-
tions of time rather than remaining as constants. For example, a
governmental policy stimulation may be able to increase the value
of ay and improve the system technology performance. An eco-
nomic crisis may lead to less R&D investment and a reduced
value of a.

As highlighted in Sec. 4.2, the simplified Lotka—Volterra equa-
tions also shed light on the relationship between the system tech-
nology and the component technologies. In Eq. (15), C; is in the
same order with o, which indicates that the component technol-
ogy (turbofan aero-engine) has a significant impact on the evolu-
tion of the system technology (passenger airplane).

The data fitting result for the component technology perform-
ance (turbofan aero-engine take-off thrust) is illustrated in Fig. 3.
The coefficient of determination R? for the component technology
time history data fitting is 0.9410. The parameter values for the
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second term b; and the third term Cyq in Eq. (16) have very small
values. These values indicate that the evolution of turbofan aero-
engine almost follows Moore’s Law. The system technology-
passenger airplane has little impact on the aero-engine perform-
ance growth. The reason for the exponential growth may be that
the modern aero-engine performance improvement also relies on
the advances in its component technologies such as materials and
combustion science. Only the interaction between passenger air-
planes and turbofan aero-engines is considered in this case study
due to data limitation. The beneficial influence from the compo-
nent technologies of the aero-engine is included in @, term in Eq.
(14) as an approximation. The impact from the passenger airplane
may be small compared to the impact from component technolo-
gies (materials and combustion science). The development of
these component technologies has not confronted significant tech-
nical barriers up to now. These possible reasons may lead to small
by and Cq values in Eq. (16).

The prediction capability of Lotka—Volterra equations is vali-
dated and compared with the extant models through a holdout

o0
=
(=]

sample test. The time history performance data for passenger air-
planes and turbofan aero-engines during 1960-1998 are modeled
using Lotka—Volterra equations (Egs. (13) and (14)), the logistic
S-curve model (Eq. (A2) with b,/a,=1 in the Appendix), and
Moore’s law (Eq. (A4) in the Appendix), respectively. The data
fitting results and the extrapolation prediction for the passenger
airplane (system technology) performance are illustrated in Fig. 4.
Both the logistic model and Moore’s law fail to predict the
appearance of the Airbus A380-800 in 2005. The logistic S-curve
model predicts the passenger airplane performance reaches an
upper limit value around 1985, leading to a 22% prediction error
in 2005. Moore’s law assumes the passenger airplane performance
continues increasing exponentially, which results in a 122% pre-
diction error in 2005. In contrast, the 7 year prediction error of
Lotka—Volterra equations is only 5% in this case. The successful
prediction of Lotka—Volterra equation is a result of modeling the
interaction between technologies. Our model takes into account
the impact of component technology (turbofan aero-engine) on
system technology (passenger airplane).
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Fig. 3 Data fitting result for component technology performance (take-off thrust of turbofan aero-engine)

[31,32]
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5 Easy Steps to Apply Lotka—Volterra Equations in
Technology Evolution Prediction

Sections 3 and 4 present the methods to apply Lotka—Volterra
equations in technology evolution prediction. These methods are
summarized into six simplified steps below. The six steps are also
illustrated in Fig. 5. Practitioners could follow these guidelines for
technology evolution prediction.

Step [—System decomposition. Practitioners first define the sys-
tem technology performance of interest. Through system decom-
position, any component technology that may have an impact on
the system technology performance should be identified. The
component technology can be tangible (e.g., CPU of a smart
phone) or intangible (e.g., operating system of a smart phone).
Practitioners should list as many component technologies as pos-
sible in this step.

Step 2—Component technology selection. From the list devel-
oped in step 1, practitioners choose the key component technolo-
gies that have a significant impact on the system technology
performance. The relationship table and maturation evaluation
provided in Secs. 3.1 and 3.2 are helpful for this process. The key
component technologies also can be selected by practitioners’
experience or industry experts’ advice. Once the key component
technologies are chosen, the performance metric for each compo-
nent technology should be determined. Typically, the performance
metric is an indicator of the technology evolution (e.g., clock
speed of CPU).

Step 3—Data collection and pretreatment. The time history
technology performance evolution data for the system and the
component technologies selected in step 2 are collected. These
data are divided by corresponding characteristic values as dimen-
sionless treatment. It is recommended to choose the maximum
performance or the performance at current time as characteristic
value for each technology.

Step 4—Parameter space definition. The Lotka—Volterra equa-
tion (Eq. (12)) is developed for each system and component tech-
nology. The parameter space (range) for a, b, and C in each
equation is determined for the optimization search in step 5.
Parameters a and b have positive values for common cases, so
their parameter space is (0, +00). Depending on the relationship
between the two technologies, parameter C may have a positive or
negative value. Therefore, the parameter space of C is (0, +00) or
(—00, 0). In some cases, the interactions between component tech-
nologies could be neglected. Lotka—Volterra equations could be
further simplified in that case.

Journal of Mechanical Design

Step 5—Data fitting. The values of parameters a, b, and C in
each Lotka—Volterra equation are searched through parameter
spaces defined in step 4. Optimum parameter values are found
that minimize the sum of squared errors between the technology
performance time history data and the solutions of Lotka—Volterra
equations. A trust region reflective algorithm [27] is suggested for
optimization. A high order Runge—Kutta numerical method (e.g.,
Dormand—Prince method [23]) is suggested to solve Lotka—
Volterra equations in each search step.

Step 6—Prediction and analysis. Using the optimum parameter
values derived in step 5, future technology performance of system
and component technologies are derived by mathematical extrapo-
lation from Lotka—Volterra equations. The prediction results
should multiply the characteristic values in step 3. The degree of
impact of the component technology i on the system technology
could be measured from parameter Cy in the Lotka—Volterra
equation for the system technology (e.g., Eq. (15)). A higher posi-
tive value of parameter C; shows greater importance of the com-
ponent technology i to the system technology.

6 Conclusions

A product can be viewed as a system technology. A product is
an integration of many elements, which are called component
technologies. The interactions between the system technology and
the component technologies are described by a full set of
Lotka—Volterra equations. The full equation set is simplified by a
relationship table and a maturation evaluation process. Smart
phones are used as an example of this two-step simplification. The
time history data of technology performance evolution are fit by
the simplified Lotka—Volterra equations. The data fitting process
is demonstrated by the interaction between passenger airplanes
and turbofan aero-engines.

The methods developed in this paper allow designers, entrepre-
neurs, and policy makers to predict the performance of a product
(system technology) and its modules (component technologies)
quantitatively through Lotka—Volterra equations. The impact of a
specific module (component technology) on the product’s (system
technology) performance is also derived from the equations.
These results aid R&D investment and component outsourcing
strategy decisions.

This work also offers opportunities for future research. First,
more quantitative technology evolution case studies could be car-
ried out using Lotka—Volterra equations, in particular, complex
cases in which a system technology interacts with two or more
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Fig. 5 Six steps to apply Lotka—Volterra equations in technol-
ogy evolution prediction

component technologies (e.g., passenger airplanes with aero-
engine and primary material of composition). Second, the
relationship between the parameters (e.g., ap) in Lotka—Volterra
equations and the decision variables (e.g., R&D investment) could
be explored further for generalizable business strategies. Third,
only one system technology performance metric (e.g., speed of a
smart phone to open an app) is taken into account in this paper.
Future work can consider several different system technology per-
formance measures, leading to multi-objective optimization
[28,34]. Finally, it may be helpful to introduce probability theory
[10,35] into Lotka—Volterra equations. Through this approach,
practitioners can derive the probabilistic prediction of product per-
formance and make more informed decisions.
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Appendix: Reduction of Lotka-Volterra Equations to
Logistic Model and Moore’s Law

When the interaction term is neglected (C,,,=0), Eq. (1) is
reduced to

dN
— =a,N — b,N? Al
P (AD
The general solution of Eq. (A1) has the form of the generalized
logistic model
A
N=r—"—7— (A2)
b n —aut

— 4+ Be ™
An

where A and B are integral constants, and a typical logistic
S-curve model is obtained when b,/a, = 1.

Further simplification can be made for Eq. (A1) if the technical
difficulty term also equals zero (b, =0 and C,,,, =0). In this case,
Eq. (A1) is reduced to

dN

— =a,N A3

ar ¢ (A3)
Solving Eq. (A3) yields

N = De™' (A4)

where D is an integral constant. Eq. (A4) gives exponential
growth for technology performance N, which is Moore’s Law.
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