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Reduction of Epistemic Model
Uncertainty in Simulation-Based
Multidisciplinary Design
Model uncertainty is a significant source of epistemic uncertainty that affects the predic-
tion of a multidisciplinary system. In order to achieve a reliable design, it is critical to
ensure that the disciplinary/subsystem simulation models are trustworthy, so that the
aggregated uncertainty of system quantities of interest (QOIs) is acceptable. Reduction
of model uncertainty can be achieved by gathering additional experiments and simula-
tions data; however, resource allocation for multidisciplinary design optimization
(MDO) and analysis remains a challenging task due to the complex structure of the sys-
tem, which involves decision makings about where (sampling locations), what (discipli-
nary responses), and which type (simulations versus experiments) for allocating more
resources. Instead of trying to concurrently make the above decisions, which would be
generally intractable, we develop a novel approach in this paper to break the decision
making into a sequential procedure. First, a multidisciplinary uncertainty analysis
(MUA) is developed to identify the input settings with unacceptable amounts of uncer-
tainty with respect to the system QOIs. Next, a multidisciplinary statistical sensitivity
analysis (MSSA) is developed to investigate the relative contributions of (functional) dis-
ciplinary responses to the uncertainty of system QOIs. The input settings and critical
responses to allocate resources are selected based on the results from MUA and MSSA,
with the aid of a new correlation analysis derived from spatial-random-process (SRP)
modeling concepts, ensuring the sparsity of the selected inputs. Finally, an enhanced pre-
posterior analysis predicts the effectiveness of allocating experimental and/or computa-
tional resource to answer the question about which type of resource to allocate. The
proposed method is applied to a benchmark electronic packaging problem to demonstrate
how epistemic model uncertainty is gradually reduced via resource allocation for data
gathering. [DOI: 10.1115/1.4033918]

Keywords: multidisciplinary design optimization, resource allocation, epistemic uncer-
tainty, multidisciplinary uncertainty analysis, multidisciplinary statistical sensitivity
analysis

1 Introduction

With the increasing accuracy and complexity of simulation
models, the cost of running high-fidelity computer simulations
becomes more and more prohibitive in simulation-based design.
Accordingly, emulators (also known as metamodels or surrogate
models) have been widely used as a replacement of original simu-
lation models and are especially useful in searching for the opti-
mal design. However, due to the lack of simulation/experimental
data, the accuracy of emulators can be very poor, which introdu-
ces epistemic model uncertainty that, in contrast to the aleatory
uncertainty from natural/physical randomness, can be reduced by
collecting additional data. We refer to the process of planning
additional experiments/simulations for reducing epistemic model
uncertainty as a resource allocation problem. Resource allocation
is even more important in MDO, which, unlike traditional design
optimization problems, is notoriously complicated due to the fact
that it requires analyses in multiple disciplines and/or involves a
number of subsystems and components. In particular, resource
allocation for MDO requires an optimal scheme to distribute
resources to different disciplines and to enhance the prediction of
system QOIs. However, this is not an easy problem, because the

coupling relationship between different disciplines leads to a
nested structure and substantial complexity.

Model uncertainty, as a major source of epistemic uncertainty
in multidisciplinary systems, stems from either having a limited
knowledge of the true reality and/or using a simplified model that
does not satisfactorily represents the reality (represented as
“model discrepancy” [1]), or from a lack of computer simulation
data (termed “code uncertainty” [1] or “interpolation uncertainty”
[2]) when replacing the expensive computer model using a surro-
gate model (metamodel). Even though the sources of these two
types of uncertainty are different, they all belong to epistemic
model uncertainty due to the lack of data—model discrepancy
uncertainty due to the lack of experimental data and interpolation
uncertainty due to the lack of computer simulation data. Both
sources of epistemic uncertainty can be addressed simultaneously
using the Bayesian Gaussian process approach presented by
Kennedy and O’Hagan [1]. The epistemic model uncertainty of
system QOIs is an aggregation of the uncertainties in the discipli-
nary subsystems, and the purpose of resource allocation is to
reduce the aggregated prediction uncertainty of system QOIs.
Nevertheless, it is not straightforward to provide a good resource
allocation scheme, due to the amount of decisions involved and
their dynamic nature. The decisions to make include:

(1) Where in the input space of a multidisciplinary system
should we allocate additional resources? (That is, what are
the input locations where system QOIs are most influenced
by epistemic model uncertainty?)
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(2) To what disciplinary response(s) shall we allocate more
resources?

(3) Which type of resources shall we allocate? Is adding more
simulations sufficient, or should we conduct more physical
experiments?

The first question requires uncertainty quantification of
disciplinary subsystems and an efficient way to propagate their
impact to the system QOIs. Although there has been extensive
research on uncertainty propagation of a single discipline [1,3–8],
or a multidisciplinary system but with only aleatory uncertainty
(e.g., using Monte Carlo simulation [9–11], Taylor series expan-
sion [12–15], decomposition strategies [16–22], etc.), existing
work for multidisciplinary systems with epistemic model
uncertainty is scarce. The problem is often oversimplified by
either predefining model bias [23–27] or assuming a simple form
of interdisciplinary couplings (restricted to feed-forward cou-
plings [28], for example). Furthermore, even after developing a
convenient uncertainty propagation scheme, one must still decide
where to choose the input sample locations so that they suffi-
ciently cover all regions with large epistemic model uncertainty.
Consequently, the second question requires an approach to distin-
guish the relative contributions (which can vary over the input
space) of the different disciplinary simulation models on the
uncertainty of system QOIs. Statistical sensitivity analysis (SSA)
is commonly used in engineering design to gain knowledge of
complex model behavior and to facilitate designers’ decision
making on where to spend engineering effort [29]. However, SSA
of model uncertainty, which is different from SSA of random vari-
ables in the more traditional literature, has rarely been studied
[30–32]. The difficulty lies in the fact that uncertain models are
essentially functional inputs rather than scalars, and hence, their
SSA would be fundamentally different than traditional routines.
Allaire et al. [30] developed a pure sampling-based approach,
whose applicability is practically limited to single-disciplinary
systems and hierarchical systems without strong couplings due to
its computational cost. SSA for a fully coupled multidisciplinary
system was never studied by other researchers. The third question
is perhaps the least studied of the three. Previous works focused
on allocating a single type of resource, typically experimental
(e.g., Ref. [28]). Indeed, relative to conducting simulations,
conducting physical experiments may be a more direct and effec-
tive way to learn physical reality, but it is also typically more
expensive. For that reason, there exists a tradeoff between most
reducing uncertainty (by conducting experiments) versus least
increasing computational budget (by conducting simulations).

On top of these three individually challenging questions, the
complexity of concurrently answering them adds another layer of
difficulty. To simplify the problem, the pioneering work by
Sankararaman et al. [28] had to assume no coupling relationship
between disciplines, and that the model uncertainty is purely due
to some unknown model parameters, which makes SSA much
easier.

To manage the complexity in the decision-making process, this
paper presents a new strategy and mathematical framework for
resource allocation in a multidisciplinary system, one that breaks
the decision making into a sequential procedure. An MUA method
[33,34] we developed earlier is applied to make the first decision
(i.e., where). A multidisciplinary sensitivity analysis (MSSA)
[31,32], which we developed to handle uncertain functional
responses as the stochastic inputs in the sensitivity analysis (the
stochastic inputs are scalar variables in the traditional sensitivity
analysis literature), is applied to investigate the relative contribu-
tions of disciplinary responses to the aggregated uncertainty of
system QOIs for the second decision (i.e., what). A type of
correlation analysis derived from SRP modeling concepts is also
developed as an aid to ensure the sparsity of the selected input
settings. Finally, an enhanced preposterior analysis predicts the
effectiveness of allocating experimental or computational
resource, or a combination of both, to make the last decision (i.e.,

which). The remainder of the paper is organized as follows.
Section 2 reviews the SRP-based model bias correction approach
to quantify epistemic model uncertainty and its extension in multi-
disciplinary systems. Section 3 details the proposed framework
for resource allocation, which is applied in Sec. 4 to a benchmark
electronic packaging problem to illustrate how the uncertainty of
system QOIs is reduced over the input space via a few iterations
of resource allocation. Concluding remarks are provided in Sec. 5.

For clarity of the discussions in this paper, we make the
following remarks:

(1) The objective of this paper is to improve the global model-
ing capability of a multidisciplinary system, such that the
epistemic model uncertainty of system QOIs is acceptable
over the input space. A globally accurate model can be
useful in many design activities other than direct optimiza-
tion; for example, the simulation/emulation results of a
model can be passed into a classification analysis for
designers to understand the potentially feasible/infeasible
input settings and to be more focused on the “regions of
interest.” This line of research [35,36] is different from the
objective-oriented sampling [37–39] which specifically
targets a local region where potential optimal design solu-
tion lies.

(2) When referring to resources, we mean experiments and
simulations. We use “experiments” in a broad context: it
can be real physical experiments, or extremely high-fidelity
simulations that (almost) can represent the reality.
“Simulations” in this paper generally refer to results from
physics-based models that are less accurate than
experiments.

(3) Emulators are nonphysics-based models that are built upon
data from experiments and simulations. They are much
less costly than direct simulations. In this work, an SRP
modeling technique is used to create disciplinary
emulators.

(4) Experiments and simulations are conducted for individual
disciplinary responses, but not for the system QOIs (which
we consider practically unaffordable). Any full systemwise
analysis is conducted using emulators.

(5) The framework proposed in this paper is targeted at a
multidisciplinary problem, although it can be simplified to
work for a single discipline as well.

2 Review of Model Bias Correction in

Multidisciplinary Systems

Model uncertainty is a significant type of epistemic uncertainty
in a multidisciplinary system. To quantify model uncertainty, data
from the computer simulations are first collected and then com-
pared with the experimental data. Based on the differences in the
response values over the two datasets, the original simulation
model is “updated” to a more accurate emulator; meanwhile, the
model uncertainty is quantified. We refer to this process as model
bias correction. Subsequently, an extra experimental dataset is
provided to validate the emulator. Model bias correction is con-
ducted iteratively by refining the model and/or collecting addi-
tional data, until the emulator is trustworthy. In this section, we
briefly review the SRP-based model bias correction technique and
its application in multidisciplinary systems.

For a functional response y(x) that depends on a p-dimensional
set of input variables x¼ (x1,…,xp), the following formulation
[1,3–8] presents the relationship between the simulations and the
experiments:

yeðxÞ ¼ ymðxÞ þ dðxÞ þ e (1)

where the superscript “e” denotes the experimental response of
y(x), and the superscript “m” denotes the simulation model of the
same response. d(x) is the discrepancy function that represents the

081403-2 / Vol. 138, AUGUST 2016 Transactions of the ASME

D
ow

nloaded from
 http://asm

edc.silverchair.com
/m

echanicaldesign/article-pdf/138/8/081403/6400556/m
d_138_08_081403.pdf by guest on 10 April 2024



model bias, and e�N (0,k) is a random error accounting for the
experimental variability, assumed to be normally distributed with
unknown variance k. The situation where e does not have zero
mean (i.e., a so-called experimental bias or “systematic error”)
would be more complicated and is beyond the scope of this paper.

Suppose that a set of M simulation response observations
fxm

i ; y
mðxm

i Þ : i ¼ 1;…;Mg and a set of N experimental response
observations fxe

i ; y
eðxe

i Þ : i ¼ 1;…;Ng have been collected.
Since xm

i ði ¼ 1;…;MÞ and xe
i ði ¼ 1;…;NÞ are not necessarily

the same input settings, and likewise, ymðxm
i Þ and yeðxe

i Þ may not
be directly compared to obtain the discrepancy function, an SRP
modeling technique is adopted to bridge the gap and enable the
comparison. An SRP can be viewed as a collection of random
variables distributed over the input space that collectively have
certain multivariate spatial correlation structure. Specifically,
Gaussian process (GP) modeling, which assumes the random vari-
ables to follow a multivariate normal distribution, has emerged
as one of the most popular metamodeling approaches due to its
ability to capture functional nonlinearity, perfectly interpolate
deterministic surfaces, etc. [40,41]. In this study, we adopt GP
modeling and model the simulation and the discrepancy function
as GPs such that

ymðxÞ � GPðhmðxÞTbm;Vmðx; x0ÞÞ

Vmðx; x0Þ ¼ r2
m exp �

Xp

k¼1

xm
k ðxk � x0kÞ

2

( )

dðxÞ � GPðhdðxÞTbd;Vdðx; x0ÞÞ

Vdðx; x0Þ ¼ r2
d exp �

Xp

k¼1

xd
kðxk � x0kÞ

2

( )
(2)

In the preceding, hm(x) and hd(x) denote vector-valued functions
whose elements are some user-specified regression basis functions
(e.g., constant, linear, quadratic, etc.), and bm and bd are two vec-
tors of regression coefficients associated with hm(x) and hd(x),
respectively. Their products, h

m(x)Tbm and h
d(x)Tbd, construct

the prior mean functions of ym(x) and d(x). rm and rd are the

prior standard deviations, and xm¼ ½xm
1 ; xm

2 ;…; xm
p �

T
and

xd¼ ½xd
1; xd

2; :::;x
d
p�

T
are the spatial correlation parameters used

to capture the nonlinearity of the functions. Vm(x,x0) and Vd(x,x0),
which depend on rm, rd, xm, and xd, are the covariance functions
of ym(x) and d(x), respectively.

Combining Eqs. (1) and (2) yields that the collected data follow
a multivariate normal distribution

d � NðHb;VdÞ (3)

where d ¼ fymðxm
1 Þ;…; ymðxm

MÞ; yeðxe
1Þ;…; yeðxe

NÞg
T

is the col-
lected response data from simulations and experiments, and
b¼ [(bm)T, (bd)T]T is the collection of regression coefficients. H is
a matrix generated by hm(�) and hd(�), and Vd is generated by
Vm(�,�) and Vd(�,�) (see Refs. [8] and [41] for full derivation and
discussion).

Let /¼ {bm, rm, xm, bd, rd, xd, k} denote the collection of
unknown parameters of the GP models, referred to as hyperpara-
meters. The key to estimating the discrepancy function and
subsequently enabling a better model prediction is to estimate
these hyperparameters. They are usually estimated via maximum
likelihood estimation, i.e., maximizing the likelihood function
p(/|d). Subsequently, we can obtain a prediction of ye(x) at any
untested design of interest x. The relationship between ye(x) and
its prediction can be written as

yeðxÞ ¼ ŷeðxÞ þ ZðxÞ (4)

where ŷeðxÞ denotes the updated mean prediction that takes into
account the discrepancy function d(x). Z(x) is a zero-mean GP,

i.e., Z(x)|x�N (0, r2
ZðxÞ), which accounts for the uncertainty in

the prediction. r2
ZðxÞ is also known as the mean square error of

the mean prediction ŷeðxÞ. The merit of using GP models is that
we are able to obtain analytical equations for calculating ŷeðxÞ
and r2

ZðxÞ. For example,

ŷeðxÞ ¼ hðxÞbþ tðxÞV�1
d ðd�HbÞ (5)

where

hðxÞ ¼ ½ hmðxÞ hdðxÞ �
tðxÞ ¼ ½Vmðx; xmÞ Vmðx; xeÞ þ Vdðx; xeÞ �

(6)

Again, Refs. [8] and [41] provide full details of calculating ŷeðxÞ
and r2

ZðxÞ.
Figure 1 illustrates a typical result from GP-based model bias

correction, in which there is originally a significant model bias
when comparing the simulation data (the triangles) and the experi-
mental data (the circles), especially on the left and right bounda-
ries of the x domain. Using GP modeling, we are able to obtain an
updated model (the solid purple curve) that matches the experi-
mental data, while maintaining the general functional trend
learned from the simulation data. Besides, GP modeling enables
the quantification of interpolation uncertainty at the locations that
have not yet been simulated, represented by a prediction interval
(PI) (the shaded region) calculated from r2

ZðxÞ.
GP-based model bias correction can be applied to multidiscipli-

nary systems. A notional multidisciplinary system is depicted in
Fig. 2. Suppose it involves a total of ND disciplines associated
with a collection of individual disciplinary input variables
xind¼ {xi: i¼ 1,…, ND} and some input variables xs that are
shared across at least two disciplines. The disciplines are coupled
via linking variables uij (i, j¼ 1,…, ND), which serve as output
from the ith discipline and input to the jth discipline. If both uij

and uji are nonempty, the relation between the ith and jth
disciplines is referred to as feedback coupling, and otherwise,
feed-forward coupling. We denote the collection of all linking
variables that are output from and input to the ith discipline as ui.
and u.i, respectively, i.e., ui.¼ {uij: j¼ 1, …, ND, j 6¼ i} and
u.i¼ {uji: j¼ 1, …, ND, j 6¼ i}. The system QOIs ysys depend on
individual disciplinary responses yind¼ {yi: i¼ 1, …, ND} col-
lected from the responses of ND disciplines, through the system
analysis model.

Epistemic model uncertainty widely exists in multidisciplinary
systems. For the ith discipline, the simulated response ui. may
have uncertainty, which will introduce uncertainty to u.i and
further influence ui. itself. Such “convolution” accumulates uncer-
tainty in the disciplinary level and passes it on to the disciplinary

Fig. 1 Illustration of GP-based model bias correction
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outputs yi. Another complication is that the simulation model for
yi may also involve epistemic model uncertainty. That is, even if
u.i has no uncertainty, simulating the response yi still could
involve uncertainty. Based on Eq. (4), we present the predictions
of all the linking variables and the disciplinary output variables,
respectively, as (for i¼ 1, 2,…, ND)

ue
i�ðxi; xs;u

e
�iÞ ¼ ûe

i�ðxi; xs; u
e
�iÞ þ Zui�ðxi; xs;u

e
�iÞ (7)

and

ye
i ðxi; xs;u

e
�iÞ ¼ ŷe

i ðxi; xs;u
e
�iÞ þ Zyiðxi; xs;u

e
�iÞ (8)

Assessing the cumulative uncertainty of system QOIs calls for
an uncertainty propagation approach. Our recent development of a
GP-based MUA method [33,34] addresses the issues of efficient
uncertainty propagation in multidisciplinary systems, which is
generically suitable for situations with both aleatory uncertainty
(from input variables xind and xs) and epistemic uncertainty (from
models). A version of the method that only considers epistemic
uncertainty (which is the main focus of this paper) will be
provided in Sec. 3.1.

3 Resource Allocation for Uncertainty Reduction

in Multidisciplinary Systems

In this section, we present in detail the proposed resource allo-
cation approach for reducing epistemic model uncertainty in a
multidisciplinary system. An overview is provided in Fig. 3. In
the preliminary step, model bias correction is conducted based on
some existing data to construct emulators for disciplinary
responses (linking the input variables uij and xj to the disciplinary
outputs yi, for each i). In step 1, a space-filling strategy is used to
explore the input space {xind, xs} by generating sufficient sample
points and identifying the locations with unacceptable amounts of
uncertainty with respect to the system QOIs ysys. The MUA
method is applied to assess the aggregated epistemic model uncer-
tainty of ysys at each sample point (Sec. 3.1). An MSSA then sepa-
rates the impact of epistemic model uncertainty from different
responses at each sample point (Sec. 3.2). Decisions about
resource allocation (where, what, and which) are made in
sequence in step 2, where we integrate the information from
MUA, MSSA, and a preposterior analysis. Finally in step 3 as
resources are allocated, another round of model bias correction is
performed.

Note that it may require a few iterations of the procedure in
Fig. 3 before the epistemic model uncertainty is reduced to a satis-
factory level. Since the variance of system QOIs ysys is an indica-
tor of the amount of uncertainty, we specify the following
stopping criterion in this paper:

c xind; xsð Þ¢

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ysys xind; xsð Þ
� �q

ð ð
kysys xind; xsð Þkdxinddxs

.ð ð
dxinddxs

� a%; for 8xind; xs (9)

The numerator is the standard deviation of ysys (at any given input
setting {xind, xs}), and the denominator is the mean of the absolute
value of ysys over the input space. Thus, c is an intuitive measure
of the prediction uncertainty that resembles the “coefficient of
variation” in traditional statistics. The user can choose other
variance-based stopping criteria, independent from the rest of
procedure presented.

3.1 Exploring the Input Space and Evaluating the Impact
of Epistemic Model Uncertainty. In step 1, to find where in the
input space is most influenced by epistemic model uncertainty, a
straightforward treatment is to apply a space-filling strategy (for

Fig. 2 A notional multidisciplinary system with epistemic
model uncertainty

Fig. 3 Flowchart of the proposed resource allocation approach
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example, Monte Carlo uniform sampling, Latin hypercube sam-
pling (LHS), Halton sequence, etc.) and generate Ns samples over

the input space: ðxðkÞind; x
ðkÞ
s Þ ¼ ðxðkÞ1 ;…; x

ðkÞ
ND; x

ðkÞ
s Þ; k ¼ 1;…; Ns.

Next, for each sample point, the GP-based MUA method [33,34]
is applied to evaluate the mean and variance of system QOIs ysys.
The merit of the MUA method is that it utilizes the structure of
GP emulators and enables an efficient analytical uncertainty anal-
ysis. The following discussion in this subsection is for every sam-
ple input that is generated, and hence for notational simplicity, we
omit the superscript “(k).”

Given a specific input setting (xind, xs), a first-order Taylor
expansion of ûe

i�ð�; �; �Þ and ŷe
i ð�; �; �Þ in Eqs. (7) and (8) is applied,

which leads to (for i¼ 1,…, ND)

ue
i� xi; xs;u

e
�i

� �
� ûe

i� xi; xs; lu�ið Þ þ
XND

j¼1;j 6¼i

@ûe
i�

@ue
j�

ue
j� � luj�

� �
þ Zui� xi; xs;u

e
�i

� �
(10)

ye
i xi; xs; u

e
�i

� �
� ŷe

i xi; xs;lu�ið Þ þ
XND

j¼1;j6¼i

@ŷe
i

@ue
j�

ue
j� � luj�

� �
þ Zyi xi; xs; u

e
�i

� �
(11)

where lui., lu.i, and lyi denote the means of ui., u.i, and yi, respec-
tively. The derivatives on the right-hand side, while not explicitly
written out, are taken at the mean of the variables, i.e., (xind, xs,
lu). Therefore, the means and covariance matrices of the linking
variables (i.e., all uij’s) and the disciplinary outputs (i.e., all yi’s)
can be estimated by (for i¼ 1,…, ND)

lui� � ûe
i�ðxi; xs;lu�iÞ; Ru � ðA�1ÞRZuðA�1ÞT (12)

lyi � ŷe
i ðxi; xs;lu�iÞ Ry � ðBA�1ÞRZuðBA�1ÞT þ RZy (13)

where Ru, RZu, Ry, and RZy denote the covariance matrices of ue,
Zu, y

e, and Zy, respectively. The matrices A and B are

A ¼

I � @ûe
1�

@ue
2�
� � � � @ûe

1�
@ue

ND�

� @ûe
2�

@ue
1�

I � � � � @ûe
2�

@ue
ND�

� � . .
.

�

� @ûe
ND�

@ue
1�
� @ûe

ND�
@ue

2�
� � � I

2
6666666666664

3
7777777777775

(14)

B ¼

0
@ŷe

1

@ue
2�
� � � @ŷe

1

@ue
ND�

@ŷe
2

@ue
1�

0 � � � @ŷe
2

@ue
ND�

� � . .
.

�

@ŷ
e
ND

@ue
1�

@ŷ
e
ND

@ue
2�
� � � 0

2
6666666666664

3
7777777777775

(15)

Since GP-based model bias correction provides analytical formu-
las to calculate ûe

i�ð�; �; �Þ and ŷe
i ð�; �; �Þ (similar to Eq. (5)), the

entries of matrices A and B also have analytical forms, which
enables an efficient calculation.

Detailed derivations can be found in Refs. [33] and [34]. After
deriving the means and covariance matrices of the disciplinary
responses yind, the derivation of the mean and variance of the sys-
tem QOIs ysys can be treated as a single-disciplinary uncertainty

propagation problem and solved using any conventional method.
From the variance of ysys, it can be easily discovered which
regions have large uncertainty.

3.2 Separating the Impact of Epistemic Model Uncertainty
From Disciplinary Responses. Apart from assessing the aggre-
gated impact of epistemic model uncertainty on ysys over the Ns

sample points, one can actually separate the total impact into the
contributions from different responses (uij’s and yi’s) using SSA.
This information is particularly important for resource allocation
in a multidisciplinary system, as it helps decision makers under-
stand what the most important factors are that influence the sys-
tem performance. Moreover, it will be shown in Sec. 3.3 that it
also helps in choosing the most appropriate input settings that are
most in need of additional resources.

The most widely used measure of variability in SSA is var-
iance, because it is usually interpretable for practitioners. Building
on the Sobol’ method [42,43], which is a variance-based Monte
Carlo method for aleatory input variability, we developed a more
comprehensive MSSA in Refs. [31] and [32] that will assess the
impact of aleatory and epistemic uncertainties. Different from the
Sobol’ method, MSSA has the capability of measuring the impact
of functional responses that serve as stochastic inputs in the
sensitivity indices (the stochastic inputs are scalar variables in the
traditional Sobol’ method, although the output is a functional
response). Particularly, we use local sensitivity analysis in this
subsection, which focuses on examining the impact of uncertain-
ties from different sources at a single input setting.

In the Sobol’ method, the variance of a random output variable
Y can be decomposed into the contributions of a set of random
input variables X1,…, Xp. The main sensitivity index (MSI) and
the total sensitivity index (TSI) of a particular input Xi, which
measure the main effect and the overall effect of Xi on the output
Y, respectively, are given by

MSI Xið Þ ¼
VarXi

EX�i
YjXið Þ

� �
Var Yð Þ

(16)

TSI Xið Þ ¼ 1�
VarX�i

EXi
YjX�ið Þ

� �
Var Yð Þ

(17)

where X�i denotes all the input variables except Xi. The subscript
in “Var” and “ E ” denotes the source of uncertainty; for example,
VarXi

ð�Þ is the variance of the variable in the brackets due to the
variation of Xi. Both MSI and TSI are between 0 and 1, with 0
indicating no effect and 1 the most dominant effect. The same
idea can be extended to examining the relative contributions of
epistemic model uncertainty. If we view any Zl�{Zui., Zyi:
i¼ 1,…, ND} (the random term that quantifies epistemic model
uncertainty of a particular response in Eqs. (7) and (8)) in a simi-
lar way as Xi is treated in Eqs. (16) and (17), then the MSI and
TSI of Zl on the system QOIs ysys can be defined as

MSI Zlð Þ ¼
VarZl

EZ�l
ysysjZl
� �� �

Var ysysð Þ
(18)

TSI Zlð Þ ¼ 1�
VarZ�l

EZl
ysysjZ�l
� �� �

Var ysysð Þ
(19)

where Z�l¼ {Zui., Zyi: i¼ 1,…, ND}\Zl. The Sobol’ variance
decomposition assumes that the uncertainty sources are uncorre-
lated, which is reasonable in our case because the epistemic uncer-
tainty of the individual disciplinary models (i.e., Zl’s) is quantified
separately and not correlated with each other.

It is worth noting that although Eqs. (18) and (19) resemble the
standard Sobol’ indices (Eqs. (16) and (17)), the calculation is
much more complex due to the fact that the Z’s are the stochastic
“input variables” in our indices, but they are really stochastic
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functional responses over the input variables (i.e., random proc-
esses rather than random variables). In standard Sobol’ indices,
the output is a functional response over the stochastic inputs, but
the stochastic inputs are scalar variables and not functional
responses themselves. For example, a sampling-based treatment
to calculate the MSI of Zl as defined in Eq. (18) is a trilevel proce-
dure: in the outer level, one needs to generate multiple Monte
Carlo realizations of Zl (which are, by the nature, realizations of a
function); in the intermediate level, for each realization of Zl, one
needs to generate realizations of Z�l (realizations of a set of func-
tions); and finally in the inner level, given the realizations of all
Z’s, computations are needed to evaluate EZ�l

ðysysjZlÞ. Therefore,
the overall computation could be extremely expensive. Likewise
for the process of calculating the TSI of Zl.

The MUA method developed in Sec. 3.1 significantly speeds up
the analysis. By applying Eqs. (12) and (13), EZ�l

ðysysjZlÞ is

directly obtained without having to sample Z�l, which eliminates
the need of the outer level aforementioned. If necessary, one can
further simplify the analysis and obtain rough approximations of
MSI and TSI by linearizing EZ�l

ðysysjZlÞ and EZl
ðysysjZ�lÞ as

½ysysjZ�l � 0;Zl� and ½ysysjZl � 0;Z�l�, respectively, i.e., fixing

the randomly varying Z terms to their zero means, which then
eliminates the need of the intermediate level as well. Such lineari-
zation would certainly lead to a less accurate sensitivity assess-
ment, but it is very useful for a fast analysis in a large complex
system.

3.3 Choosing Input Settings and Corresponding Responses
for Resource Allocation. To decide where to allocate more
resources, a simple approach is to choose a few samples (up to the

budget) with the largest variance of ysys among the Ns samples
generated in Sec. 3.1. However, this is not the best approach, since
multiple sample points may happen to fall inside the same region
that has a large epistemic model uncertainty, especially when Ns

is large. In such case, allocating resource to a single point inside
this region should be sufficient for reducing the uncertainty. A
good decision-making criterion is needed to detect whether two
points with large uncertainty are “sufficiently far away” from each
other, so that our final selection of samples would be widely
spread over the input space without dense clustering. In this
subsection, we propose a form of correlation analysis that utilizes
information from the GP-based correlation, which measures the
spatial proximity between two input settings, to select the best
subset of input settings to allocate more resources.

Consider two sample points, denoted by ðxðkÞind; x
ðkÞ
s Þ ðk ¼ 1; 2Þ

without loss of generality, from the Ns samples we generated in
Sec. 3.1. We start by calculating their sensitivity indices and
detecting the main contributing sources of uncertainty, respec-
tively, at these two input locations. If their major sources of uncer-

tainty are different, i.e., if Var½ysysðx
ðkÞ
ind; x

ðkÞ
s Þ� ðk ¼ 1; 2Þ are

mostly induced by model uncertainty from two different

responses, then it is concluded that ðxð1Þind; x
ð1Þ
s Þ and ðxð2Þind; x

ð2Þ
s Þ are

“far away” from each other and reside in different regions. On the

other hand, if Var½ysysðx
ðkÞ
ind; x

ðkÞ
s Þ� ðk ¼ 1; 2Þ turn out to be induced

by uncertainty of the same response (for example, some response
L(xL, xs, u.L)�{ui., yi: i¼ 1,…, ND} associated with model uncer-
tainty term Zl), then the two points may or may not be far away.
We need to proceed to evaluate their correlation coefficient in the
GP emulator of L, defined as

q1;2 ¼
VmL x

1ð Þ
ind; x

1ð Þ
s ;l 1ð Þ

u�L

� �
; x

2ð Þ
ind; x

2ð Þ
s ; l 2ð Þ

u�L

� �� �
þ VdL x

1ð Þ
ind; x

1ð Þ
s ; l 1ð Þ

u�L

� �
; x

2ð Þ
ind; x

2ð Þ
s ;l 2ð Þ

u�L

� �� �
r2

mL þ r2
dL þ kL

(20)

In the denominator, r2
mL, r2

dL, and kL are the prior variances of the

simulation model, the discrepancy function, and the experimental
variance of response L, respectively; their sum, according to
Eq. (2), is the prior variance of experimental response Le at

ðxðkÞind; x
ðkÞ
s Þ ðk ¼ 1; 2Þ. In the numerator, VmL(�,�) and VdL(�,�) are

the covariance functions of the simulation model and the discrep-
ancy function of L, respectively, which can be directly calculated
from Eq. (2); their sum is the prior covariance of the two sample

points. lðkÞu˚L ðk ¼ 1; 2Þ are the estimated values of linking variables

(as inputs to the response L). Therefore, q1,2 is the GP-based cor-
relation coefficient, which is an indicator of how much impact the
two input settings have over each other; in other words, how likely
it is that they would yield a similar value of response and/or share
a similar amount of uncertainty. It can be seen that this type of
correlation coefficient is easy to compute and yet comprehen-
sively combines the information of the absolute spatial distance
between two sample points, the roughness of the response (quanti-
fied by xm and xd in Eq. (2)), and the general trend of the
response (quantified by bm, bd, rm, and rd in Eq. (2)). If q1,2 is
close to 1 (or larger than a user-defined limit b), the two sample
points are considered to be in the same local region, and we con-
clude that allocating resource to one of them should be sufficient.

The Appendix gives a pseudocode for choosing the proper sam-
ple points for resource allocation. Furthermore, the developed
method allows us to decide at each chosen sample point what
response to allocate more resource, by picking the response L that
mostly influences ysys at this point.

3.4 Deciding the Type of Resource to Allocate for Each
Chosen Sample Point. Finally, the one remaining task is to
decide which type of resource, simulation or experiment, to allo-
cate for each chosen input setting and the corresponding chosen
response at this input setting. To address this, in this subsection,
we propose an enhanced preposterior analysis approach (see
Fig. 4, based upon a similar idea in the earlier work [44,45]),
which, prior to allocating the resources, can predict the posterior
variance of ysys if the resources are actually gathered. Different
from the existing work in the literature that focuses only on a sin-
gle type of resource (usually experimental), the preposterior anal-
ysis proposed in this section provides insight for any combination
of simulations and experiments.

Following the analyses in Sec. 3.3, suppose we have already
made the decision to allocate more resources to response L at

input locations ðxðkÞind; x
ðkÞ
s ; lðkÞu�LÞ ðk ¼ 1;…;NLÞ, and to response L0

at input locations ðxðkÞind; x
ðkÞ
s ; lðkÞu�L0 Þ ðk ¼ NL þ 1;…;NL þ NL0 Þ, etc.

The preposterior analysis first generates hypothetical simulation
and/or experimental data and then evaluates the influence on the
posterior variance of the system QOIs. The detailed procedure is
as follows:

(1) Suggest a resource allocation plan and generate hypotheti-
cal data.
To assess the impact of conducting experiments at

ðxðkÞind; x
ðkÞ
s ;lðkÞu�LÞ ðk ¼ 1;…;NLeÞ and conducting simula-

tions at ðxðkÞind; x
ðkÞ
s ;lðkÞu�LÞ ðk ¼ NLe þ 1;…;NLÞ for response

081403-6 / Vol. 138, AUGUST 2016 Transactions of the ASME

D
ow

nloaded from
 http://asm

edc.silverchair.com
/m

echanicaldesign/article-pdf/138/8/081403/6400556/m
d_138_08_081403.pdf by guest on 10 April 2024



L, hypothetical experimental and simulation data are gener-
ated accordingly at these locations. A preferred way is to
generate them simultaneously considering their correlation.
It should be noted that Le (i.e., the experimental response of

L) at ðxðkÞind; x
ðkÞ
s ;lðkÞu�LÞ ðk ¼ 1;…;NLeÞ and Lm (i.e., the simu-

lation response of L) at ðxðkÞind; x
ðkÞ
s ; lðkÞu�LÞ ðk ¼ NLe þ

1;…;NLÞ follow a jointly normal distribution that can be
determined from the already estimated hyperparameters of
the GP models. The equation for the jointly normal distri-
bution is similar to Eq. (3), i.e., d�N (Hb, Vd), where d
here should be interpreted as the hypothetical data to be
generated, and Vd is a covariance matrix whose entries are
the covariances between selected input settings and/or
between Le and Lm. Therefore, a set of hypothetical experi-
mental and simulation data can be generated by drawing a
sample from this jointly normal distribution.

(2) Update the emulators after obtaining the hypothetical data.
To calculate how the emulators will change after adding
the hypothetical data (which we treat as real data in the pre-
posterior analysis), one could do another round of model
bias correction using the collection of real data and
hypothetical data, although this could be time consuming.
Alternatively, by assuming that the estimation of the hyper-
parameters of the GP models will not significantly change
with a few additional data, one can simply obtain a new
model prediction by reusing the already estimated values of
the hyperparameters in Eq. (5). The symbols now have new
meanings; for example, d and Vd in Eq. (5) are now
referred to as the collection of real and hypothetical data
and their covariance matrix, respectively.

(3) Conduct uncertainty propagation using the new model pre-
diction.

After all the emulators for disciplinary responses are
updated using the hypothetical data, uncertainty propaga-
tion as presented in Sec. 3.1 can provide information about
how much the uncertainty of system QOIs ysys is changed.

(4) Calculate the “expected” reduced uncertainty of system
QOIs ysys.
Note that steps 1–3 in this subsection are done under a spe-
cific set of hypothetical data. In order to achieve statisti-
cally meaningful results, steps 1–3 should be repeated by
generating multiple sets of hypothetical data, which leads
to an expected (averaged) reduced uncertainty of ysys.

The preposterior analysis can be conducted for any suggested
resource allocation plan, and users can select a plan that balances
effectiveness and cost. Practically, one can first analyze the
expected uncertainty reduction under the plan that all additional
resources are from simulations, and then check whether the crite-
rion (9) will be satisfied. Those locations where this criterion is
not likely to be satisfied after gathering new simulations should be
considered for experimental measurements.

4 Case Study

To demonstrate the proposed resource allocation approach, we
consider an electronic packaging design problem [46], a bench-
mark multidisciplinary problem that has been frequently studied
in the literature [23,25,47–49]. A circuit consisting of two resis-
tors is mounted on a heat sink, and there are two coupled disci-
plines, i.e., the electrical and thermal subsystems, as demonstrated
in Fig. 5. Eight input variables x1–x8, five linking variables y6, y7,
and y11–y13, and a system QOI y1 are involved in this test prob-
lem. The numbering of the variables follows the same as used in
the aforementioned works. Table 1 provides the physical

Fig. 4 The preposterior analysis
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meanings of the variables; a detailed problem statement that
includes descriptions of all variables and the bounds of the design
variables can be found in the referenced literature.

The original problem is a design optimization formulation to
maximize the watt density (i.e., to minimize y1). To test our pro-
posed approach, we modify the original problem as follows.
Instead of finding an optimal solution, we now aim at achieving a
good predictive model of y1 over the whole design space of x1–x8.
Since the thermal discipline is much more complex than the elec-
trical discipline in that it requires a finite difference strategy to
calculate the component temperatures, we assume that the models
to evaluate y11, y12, given {x1, x2, x3, x4, y6, y7}, are inaccurate
and require model bias correction. In the first iteration of resource
allocation, we collect simulation and experimental data and con-
duct model bias correction for y11 and y12 (Sec. 4.1), and then
evaluate the impact of epistemic model uncertainty on the system
QOI y1 (Sec. 4.2), and then apply the proposed resource allocation
approach to reduce the aggregated uncertainty on y1 (Sec. 4.3).
The results from subsequent iterations are provided in Sec. 4.4.

4.1 Model Bias Correction for the Thermal Discipline
(First Iteration). We first collect data comprised of 40
“experimental” observations. Since the original benchmark
problem does not provide any experimental data, we generate a
set of data for y11 and y12 by adding random noise to the exact
model provided in Ref. [46], which we treat as the experimental
data. The 40 experimental runs are determined via an LHS over
the six-dimensional input space {x1, x2, x3, x4, y6, y7}. We then
collect data comprised of 40 simulation observations of y11 and
y12 from low-fidelity simulation models that we build, which
intentionally have a significant discrepancy d(x) compared with
the exact model in Ref. [46]. The 40 simulation runs are deter-
mined via a different LHS, so that their locations are completely
different than those for the experimental runs. Note that {y6, y7}
are input variables to the thermal discipline and yet essentially
linking variables in the whole system; hence, we do not know
beforehand their ranges. We assume in this stage that they are
both within [0, 8] based on some preliminary system-level simula-
tions (using the current “wrong” simulation models). We will
show later that their actual bounds are slightly beyond that.

The data points are shown in Fig. 6, with only the {y6, y7} plot-
ted for illustration purpose. The GP-based model bias correction

in Sec. 2.1 is applied to integrate the two sets of data and to subse-
quently obtain the updated emulators of y11 and y12. An extra vali-
dation step is performed with 25 reserved experimental data; a
comparison between the updated emulators and the validation
data, together with the 95% PIs, is provided in Fig. 7. It can be
seen that for both responses, 40 experimental dataþ 40 simula-
tions are barely sufficient for bias correction: at some validation
points, the PIs are large, and a few validation data are even outside
the 95% PI. It can be anticipated that such uncertainty will propa-
gate and influence the system QOI y1.

4.2 Selection of Input Settings and Responses for
Resources Allocation (First Iteration). In this step, 2000 LHS
samples are generated to explore the input space of x1–x8 (see
Fig. 8). The MUA method described in Sec. 3.1 evaluates the
aggregated uncertainty of y1 at each sample point. As a reminder,
the analysis in this step only relies upon the emulators that we just
built in Sec. 4.1, and thus, the computations for 2000 samples are
not at all prohibitive.

Uncertainty acceptance criterion a% in Eq. (9) is set to be 10%.
It turns out that there are only 11 samples (the highlighted blue
rectangle and red circles in Fig. 8) out of 2000 that violate the
acceptance criterion, which indicates an overall acceptable
amount of uncertainty in the design space. However, the largest c
in Eq. (9) is 47.31%, which shows that in some local areas, the
uncertainty is huge. Using the correlation check presented in
Sec. 3.3 (with the correlation limit b set to be 0.95), 10 samples
(the red circles) out of 11 are selected for allocating more
resources.

The result of MSSA at the ten selected input settings is pro-
vided in Fig. 9, based on which we decide to allocate more resour-
ces to y11 at input settings #1–3, 5, and 10 (since at these points
the MSI of y11 is larger than that of y12), and to y12 at the rest of
input settings. Note that here we only plot the MSI of y11 and y12.
It is because they are only two uncertainty sources in this problem,
and based on the definitions of MSI and TSI in Eqs. (18) and (19),
we have

Fig. 6 Design of experiments for model bias correction in the
thermal discipline: 40 experiments 1 40 simulations sparsely
over the six-dimensional space {x1, x2, x3, x4, y6, y7}. The data
points are plotted by projecting them onto {y6, y7} for
illustration.

Table 1 Physical meanings of the variables in the electronic
packaging system

x1 Heat sink width (m)
x2 Heat sink length (m)
x3 Fin length (m)
x4 Fin width (m)
x5 Nominal resistance #1 at temperature 20 	C (X)
x6 Temperature coefficient of electrical resistance #1 (K�1)
x7 Nominal resistance #2 at temperature 20 	C (X)
x8 Temperature coefficient of electrical resistance #2 (K�1)
y1 Negative of watt density (W/m3)
y6 Power dissipation in resistor #1 (W)
y7 Power dissipation in resistor #2 (W)
y11 Component temperature of resistor #1 (	C)
y12 Component temperature of resistor #2 (	C)
y13 Heat sink volume (m3)

Fig. 5 Electronic packaging system
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TSIðZy11Þ ¼ 1�MSIðZy12Þ
TSIðZy12Þ ¼ 1�MSIðZy11Þ

(21)

We omit the plots of TSI as MSI offers sufficient information
from sensitivity analysis.

4.3 Preposterior Analysis to Decide the Type of Resources
to Allocate (First Iteration). We now apply the preposterior
analysis to decide which type of resources to allocate, for each of
the ten selected input settings. A total of 500 random sets of data
are drawn from the joint normal distribution of ym

11 at input set-
tings #1–3, 5, and 10, and ym

12 at input settings #4 and 6–9, which
compose the hypothetical simulation data (a 500
 10 matrix).
This joint distribution comes from the GP models of ym

11 and ym
12

built in Sec. 4.1. By adding one set of hypothetical data (one row
of the matrix), the emulators for y11 and y12 are both updated
(hypothetically), based on which the aggregated uncertainty of
system QOI y1 (presented by c in Eq. (9)) is reevaluated (again,
for each of the ten selected input settings). The predicted reduced
uncertainty of y1 after gathering more simulation data is taken to
be the average of the reevaluated c over the 500 hypothetical sets
of simulation data.

Fig. 7 Comparison between the validation data and the updated emulators of (a) y11 and (b)
y12 after model bias correction

Fig. 8 Two thousand LHS samples to explore the eight-
dimensional design space x1–x8 (projected onto {x1, x2} for
illustration), and the final selected samples for resource
allocation

Fig. 9 MSSA of the selected ten input settings

Fig. 10 Preposterior analysis: comparison between the cur-
rent uncertainty and the expected reduced uncertainty (calcu-
lated by taking the average of the reduced uncertainty under
500 sets of hypothetical simulation data)
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The result of the preposterior analysis is shown in Fig. 10. The
uncertainty of y1 at most of the input settings (#2, 3, and 6–10) is
expected to be reduced to the acceptable level (a%¼ 10% in
Eq. (9)); however, points #1, 4, and 5 still do not satisfy the uncer-
tainty criterion. Therefore, instead of allocating simulation data to
all the ten points, we should rather allocate experimental data to
#1, 4, and 5.

To sum up, our decision for resource allocation after the first
iteration of analysis is:

(1) conduct simulations of y11 at points #2, 3, and 10 and y12 at
points #6–9

(2) conduct physical experiments of y11 at points #1 and 5 and
y12 at point #4

4.4 Decisions for Resource Allocation (Second–Fourth
Iterations). The process of resource allocation is iterative. The
2000 LHS samples in each iteration are different, and hence help

Fig. 11 Locations and types of the allocated resources for y11 and y12: (a) y11, first iteration, (b) y11, second iteration, (c) y11,
third iteration, (d) y11, fourth iteration, (e) y12, first iteration, (f) y12, second iteration, (g) y12, third iteration, and (h) y12, fourth iter-
ation. Data are over the six-dimensional space {x1, x2, x3, x4, y6, y7} but projected onto {y6, y7} for illustration.
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to thoroughly explore the whole design space. It turns out that
after four iterations, all of the LHS samples generated satisfy the
uncertainty limit specified in Eq. (9). The locations and types of
the added resources and the corresponding responses after each
iteration are provided in Fig. 11. The number of total samples (for
model bias correction) after each iteration is provided in Table 2.

In Fig. 11, it is seen that although {y6, y7} are initially assumed
to be within the range of [0, 8]2 (discussed in Sec. 4.1), the actual
range for {y6, y7} is slightly beyond that and there are some new
samples selected in the later iterations that reach the region where
y6> 8 or y7> 8. We consider it a merit of the proposed method
that it can gradually detect the region where we might have over-
looked as the models get improved.

Beyond considering only physical experiments in existing liter-
ature, we treat computer simulations as yet another useful tool to
reduce the epistemic model uncertainty, and this example show-
cases the merit of allocating computational resources. As shown
in Table 2, more than 70% of the allocated resources (24 out of
34) are from computer simulations. We believe that it is because
computer simulations help reduce the uncertainty due to the lack
of data, and potentially also help discover the fundamental fea-
tures of disciplinary responses. One can imagine that in an ideal
situation when simulation models are perfect, uncertainty reduc-
tion can be achieved by conducting only simulations without help
from physical experiments.

Another observation from this case study is that, to achieve a
globally satisfactory model for QOIs in a multidisciplinary system
does not require the disciplinary subsystem emulators to be glob-
ally satisfactory in their own input domains. In other words, the
allocated resources to disciplinary subsystems do not necessarily
cover the input space of disciplinary models. For example, it can
be seen from Fig. 11 that all the resources allocated to y11 are
clustered in a narrow band where y7 is small, and that the resour-
ces allocated to y12 are clustered in a narrow band where y6 is
small. It is due to the complex coupling relationship between dif-
ferent disciplines in the system; many combinations of {y6, y7}
are not achievable when the two disciplines couple together, and
hence, there is no need to improve the modeling capability over
those unachievable regions.

5 Conclusions

In this paper, we develop a new approach for resource alloca-
tion in multidisciplinary systems to reduce the aggregated episte-
mic model uncertainty of system QOIs. The novelty of the
approach lies in breaking down the complex resource allocation
problem that involves multiple decisions into a sequential set of
decisions to answer questions of where (sampling locations), what
(disciplinary responses), and which (simulations versus experi-
ments). The proposed sequential decision-making strategy man-
ages the complexity in creating globally accurate surrogate
models for each subsystem in multidisciplinary analysis and
design optimization by allocating resources (samples) that have
the largest impact on reducing the uncertainty in predicting
system QOI. After quantifying disciplinary epistemic model
uncertainty using GP-based model bias correction, we first explore
the input space of the whole system to identify the locations
(where) with unacceptable amounts of uncertainty with respect to

the system QOIs. In this step, the MUA method provides a fast
and analytical uncertainty analysis. Next, the identification of crit-
ical responses (what) at the selected inputs is done using an
MSSA we developed earlier to evaluate the relative contribution
of each functional response. Meanwhile, the proposed correlation
analysis uses the information from GP-based correlation to deter-
mine the proximity of input settings and to ensure that the selected
input settings are sparsely located. Finally, decisions are made
about which type of resources to allocate to the critical responses
at the chosen input locations, via an enhanced preposterior analy-
sis that predicts the effect of gathering more resources prior to the
actual resource allocation. The preposterior analysis, unlike any
preceding work in the literature, is applicable to any combination
of experiments and simulations. The proposed method is applied
to a benchmark electronic packaging problem to reduce the aggre-
gated epistemic model uncertainty of the system QOI.

The proposed approach has the following advantages. First, it
considers not only the physical experiments but also the computer
simulations. We demonstrate in the case study that in many
cases, the physical experiments are not really necessary, if the
epistemic model uncertainty mainly comes from lack of data. Sec-
ond, because the proposed approach strategically breaks resource
allocation into a sequential process, the decision making is much
more tractable. Third, the method is efficient for complex multi-
disciplinary analysis. Except for the stage when the simulation or
physical experiments are collected, all the analyses are conducted
based on inexpensive GP emulators. The MUA and MSSA
methods further accelerate the procedure by providing analytical
formulas. Last but not least, while we do not elaborate it, the pro-
posed framework can be simplified to work for a single discipline
as well. In that case, MUA and MSSA may not be useful as a sin-
gle discipline typically involves a single response; however, the
GP-based correlation analysis and the preposterior analysis are
still applicable.

The limitation of the work is that it does not explicitly consider
the costs of simulations and experiments, although users can
adjust the tunable preference parameters of the uncertainty accep-
tance level and correlation coefficient of samples based on the
total budget. Our future research will include the budget as a con-
straint in the decision-making process of resource allocation.
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Nomenclature

d ¼ collected data
h

m(�), h
d(�) ¼ predefined basis function for polynomial

regression of mean function of simulation model
GP/discrepancy function GP

MSI ¼ main sensitivity index
ND ¼ number of disciplines
TSI ¼ total sensitivity index

uij ¼ linking variables, output from the ith discipline
and input to the jth discipline

Vm(�,�), Vd(�,�) ¼ covariance function of simulation model
GP/discrepancy function GP

x ¼ (x1,…, xp)¼ p-dimensional input variable
xi, xind ¼ disciplinary input variables of the ith discipline/

all ND disciplines
xs ¼ shared input variables across two or more

disciplines
yi, yind ¼ disciplinary outputs of the ith discipline/all ND

disciplines
ysys ¼ system QOIs

ym(�), ye(�) ¼ simulation/experimental response

Table 2 Number of total samples for model bias correction
after each iteration

Iteration # ye
11 ym

11 ye
12 ym

12

0 40 40 40 40
1 42 43 41 44
2 43 49 44 49
3 44 50 45 52
4 44 51 46 53
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ŷe (�) ¼ mean prediction of the experimental response
Z(�) ¼ a random quantity representing model

uncertainty
Zl ¼ model uncertainty term for model L

Z�l ¼ model uncertainty terms for models except L
a% ¼ predefined uncertainty limit for c(�,�)

b ¼ predefined limit for q
bm, bd ¼ coefficients for polynomial regression of mean

function of simulation model GP/discrepancy
function GP

c(�,�) ¼ measure of uncertainty at a particular input
setting

d(�) ¼ model discrepancy function
e ¼ experimental error
l ¼ mean vector; subscript, if available, denotes a

specific random quantify, e.g., lui. refers to the
mean of ui.

q ¼ correlation coefficient
r2

Z (�) ¼ variance of Z(�)
R ¼ covariance matrix; subscript, if available,

denotes a specific random quantify, e.g., Ru

refers to the covariance ue

/ ¼ hyperparameters of GP

Appendix

Pseudocode for Choosing the Sample Points in Sec. 3.3.

Given: ðxðkÞind; x
ðkÞ
s Þ, k¼ 1,…, Ns from Section 3.1

1. Sort k by Var½ysysðx
ðkÞ
ind; x

ðkÞ
s Þ� in descending order

2. Initialize a, b, list1¼ fnjðxðnÞind; x
ðnÞ
s Þviolates Eq: ð9Þg, list2¼ {1}

3. for all n� list1
4. for all g � list2
5. find response L that contributes most to Var½ysysðx

ðnÞ
ind; x

ðnÞ
s Þ�

6. find response L0 that contributes most to Var½ysysðx
ðgÞ
ind; x

ðgÞ
s Þ�

7. if L 6¼L0, then
8. set flag(n,g)¼ 1
9. elseif qn,g<b [Eq. (20)], then
10. set flag(n,g)¼ 1
11. else
12. set flag(n,g)¼ 0
13. endif
14. endfor
15. if flag(n,g)¼ 1, 8g� list2, then
16. add n to list2
17. endif
18. endfor

The chosen sample points are stored in “list2.”
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