Abstract

The numerical accuracy of finite element analysis (FEA) depends on the number of finite elements used in the discretization of the space, which can be varied using the mesh size. The larger the number of elements, the more accurate the results are. However, the computational cost increases with the number of elements. In current practice, the experimenter chooses a mesh size that is expected to produce a reasonably accurate result, and for which the computer simulation can be completed in a reasonable amount of time. Improvements to this approach have been proposed using multifidelity modeling by choosing two or three mesh sizes. However, mesh size is a continuous parameter, and therefore, multifidelity simulations can be performed easily by choosing a different value for the mesh size for each of the simulations. In this article, we develop a method to optimally find the mesh sizes for each simulation and satisfy the same time constraints as a single or a double mesh size experiment. A range of different mesh sizes used in the proposed method allows one to fit multifidelity models more reliably and predict the outcome when meshes approach infinitesimally small, which is impossible to achieve in actual simulations. We illustrate our approach using an analytical function and a cantilever beam finite element analysis experiment.

References

1.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statis. Sci.
,
4
(
4
), pp.
409
423
.
2.
Currin
,
C.
,
Mitchell
,
T.
,
Morris
,
M.
, and
Ylvisaker
,
D.
,
1991
, “
Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
,
86
(
416
), pp.
953
963
.
3.
Santner
,
T. J.
,
Williams
,
B. J.
,
Notz
,
W. I.
, and
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
, Vol.
1
,
Springer
,
New York
.
4.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Gary Wang
,
G.
,
2020
, “
Multi-Fidelity Modeling and Adaptive Co-Kriging-Based Optimization for All-Electric Geostationary Orbit Satellite Systems
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021404
.
5.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Calibration and Validation Framework for Selective Laser Melting Process Based on Multi-Fidelity Models and Limited Experiment Data
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081701
.
6.
Patra
,
A.
,
Batra
,
R.
,
Chandrasekaran
,
A.
,
Kim
,
C.
,
Huan
,
T. D.
, and
Ramprasad
,
R.
,
2020
, “
A Multi-Fidelity Information-Fusion Approach to Machine Learn and Predict Polymer Bandgap
,”
Comput. Mater. Sci.
,
172
, p.
109286
.
7.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
8.
Qian
,
Z.
,
Seepersad
,
C. C.
,
Joseph
,
V. R.
,
Allen
,
J. K.
, and
Wu
,
C. F. J.
,
2006
, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
668
677
.
9.
Goh
,
J.
,
Bingham
,
D.
,
Holloway
,
J. P.
,
Grosskopf
,
M. J.
,
Kuranz
,
C. C.
, and
Rutter
,
E.
,
2013
, “
PreDiction and Computer Model Calibration Using Outputs From Multifidelity Simulators
,”
Technometrics
,
55
(
4
), pp.
501
512
.
10.
Joseph
,
V. R.
,
2016
, “
Space-Filling Designs for Computer Experiments: A Review
,”
Q. Eng.
,
28
(
1
), pp.
28
35
.
11.
Qian
,
P. Z.
,
2009
, “
Nested Latin Hypercube Designs
,”
Biometrika
,
96
(
4
), pp.
957
970
.
12.
Sarkar
,
S.
,
Mondal
,
S.
,
Joly
,
M.
,
Lynch
,
M. E.
,
Bopardikar
,
S. D.
,
Acharya
,
R.
, and
Perdikaris
,
P.
,
2019
, “
Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration
,”
ASME J. Mech. Des.
,
141
(
12
), p.
021404
.
13.
Liu
,
Y.
,
Li
,
K.
,
Wang
,
S.
,
Cui
,
P.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
A Sequential Sampling Generation Method for Multi-Fidelity Model Based on Voronoi Region and Sample Density
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121702
.
14.
Stroh
,
R.
,
Bect
,
J.
,
Demeyer
,
S.
,
Fischer
,
N.
,
Marquis
,
D.
, and
Vazquez
,
E.
,
2021
, “
Sequential Design of Multi-Fidelity Computer Experiments: Maximizing the Rate of Stepwise Uncertainty Reduction
,”
Technometrics
,
62
(
2
), pp.
1
11
.
15.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier
,
Amsterdam
.
16.
Tuo
,
R.
,
Wu
,
C. F. J.
, and
Yu
,
D.
,
2014
, “
Surrogate Modeling of Computer Experiments With Different Mesh Densities
,”
Technometrics
,
56
(
3
), pp.
372
380
.
17.
DiazDelaO
,
F.
, and
Adhikari
,
S.
,
2012
, “
Bayesian Assimilation of Multi-Fidelity Finite Element Models
,”
Comput. Struct.
,
92–93
, pp.
206
215
.
18.
Johnson
,
M. E.
,
Moore
,
L. M.
, and
Ylvisaker
,
D.
,
1990
, “
Minimax and Maximin Distance Designs
,”
J. Stat. Plan. Inference
,
26
(
2
), pp.
131
148
.
19.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
20.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plan. Inference
,
43
(
3
), pp.
381
402
.
21.
Joseph
,
V. R.
,
Gul
,
E.
, and
Ba
,
S.
,
2015
, “
Maximum Projection Designs for Computer Experiments
,”
Biometrika
,
102
(
2
), pp.
371
380
.
22.
Haaland
,
B.
, and
Qian
,
P. Z.
,
2010
, “
An Approach to Constructing Nested Space-Filling Designs for Multi-Fidelity Computer Experiments
,”
Stat. Sinica
,
20
(
3
), p.
1063
.
23.
Qian
,
P. Z.
,
Tang
,
B.
, and
Wu
,
C. J.
,
2009
, “
Nested Space-Filling Designs for Computer Experiments With Two Levels of Accuracy
,”
Stat. Sinica
,
19
(
1
), pp.
287
300
.
24.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscipl. Optim.
,
32
(
5
), pp.
369
382
.
25.
Le Gratiet
,
L.
, and
Cannamela
,
C.
,
2015
, “
Cokriging-Based Sequential Design Strategies Using Fast Cross-Validation Techniques for Multi-Fidelity Computer Codes
,”
Technometrics
,
57
(
3
), pp.
418
427
.
26.
Chen
,
S.
,
Jiang
,
Z.
,
Yang
,
S.
, and
Chen
,
W.
,
2017
, “
Multimodel Fusion Based Sequential Optimization
,”
AIAA. J.
,
55
(
1
), pp.
241
254
.
27.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N. -H.
, and
Haftka
,
R. T.
,
2019
, “
Issues in Deciding Whether to Use Multifidelity Surrogates
,”
AIAA J.
,
57
(
5
), pp.
2039
2054
.
28.
Marin
,
F.
,
Souza
,
A. F. d.
,
Pabst
,
R. G.
, and
Ahrens
,
C. H.
,
2019
, “
Influences of the Mesh in the Cae Simulation for Plastic Injection Molding
,”
Polímeros
,
29
(
3
), p.
05019
.
29.
Pain
,
C.
,
Umpleby
,
A.
,
De Oliveira
,
C.
, and
Goddard
,
A.
,
2001
, “
Tetrahedral Mesh Optimisation and Adaptivity for Steady-State and Transient Finite Element Calculations
,”
Comput. Methods. Appl. Mech. Eng.
,
190
(
29–30
), pp.
3771
3796
.
30.
Joseph
,
V. R.
,
Dasgupta
,
T.
,
Tuo
,
R.
, and
Wu
,
C. J.
,
2015
, “
Sequential Exploration of Complex Surfaces Using Minimum Energy Designs
,”
Technometrics
,
57
(
1
), pp.
64
74
.
31.
Joseph
,
V. R.
,
Wang
,
D.
,
Gu
,
L.
,
Lyu
,
S.
, and
Tuo
,
R.
,
2019
, “
Deterministic Sampling of Expensive Posteriors Using Minimum Energy Designs
,”
Technometrics
,
61
(
3
), pp.
297
308
.
32.
Smith
,
M.
,
2009
, “
ABAQUS/Standard User’s Manual
,” Version 6.9, Dassault Systèmes Simulia Corp, Providence, RI.
33.
Hung
,
Y.
,
Joseph
,
V. R.
, and
Melkote
,
S. N.
,
2015
, “
Analysis of Computer Experiments With Functional Response
,”
Technometrics
,
57
(
1
), pp.
35
44
.
You do not currently have access to this content.