Abstract

A traditional ensemble approach to predicting the remaining useful life (RUL) of equipment and other assets has been constructing data-driven and model-based ensembles using identical predictors. This ensemble approach may perform well on quality data collected from laboratory tests but may ultimately fail when deployed in the field because of higher-than-expected noise, missing measurements, and different degradation trends. In such work environments, the high similarity of the predictors can lead to large under/overestimates of RUL, where the ensemble is only as accurate as the predictor which under/overestimated RUL the least. In response to this, we investigate whether an ensemble of diverse predictors might be able to predict RUL consistently and accurately by dynamically aggregating the predictions of various algorithms which are found to perform differently under the same conditions. We propose improving ensemble model performance by (1) using a combination of diverse learning algorithms which are found to perform differently under the same conditions and (2) training a data-driven model to adaptively estimate the prediction weight each predictor receives. The proposed methods are compared to three existing ensemble prognostics methods on open-source run-to-failure datasets from two popular systems of prognostics research: lithium-ion batteries and rolling element bearings. Results indicate the proposed ensemble method provides the most consistent prediction accuracy and uncertainty estimation quality across multiple test cases, whereas the individual predictors and ensembles of identical predictors tend to provide overconfident predictions.

References

1.
Kordestani
,
M.
,
Saif
,
M.
,
Orchard
,
M. E.
,
Razavi-Far
,
R.
, and
Khorasani
,
K.
,
2021
, “
Failure Prognosis and Applications—A Survey of Recent Literature
,”
IEEE Trans. Reliab.
,
70
(
2
), pp.
728
748
.
2.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Process.
,
104
, pp.
799
834
.
3.
Sikorska
,
J. Z.
,
Hodkiewicz
,
M.
, and
Ma
,
L.
,
2011
, “
Prognostic Modelling Options for Remaining Useful Life Estimation by Industry
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1803
1836
.
4.
Wu
,
J.
,
Wu
,
C.
,
Cao
,
S.
,
Or
,
S. W.
,
Deng
,
C.
, and
Shao
,
X.
,
2019
, “
Degradation Data-Driven Time-to-Failure Prognostics Approach for Rolling Element Bearings in Electrical Machines
,”
IEEE Trans. Ind. Electron.
,
66
(
1
), pp.
529
539
.
5.
Behzad
,
M.
,
Arghan
,
H. A.
,
Bastami
,
A. R.
, and
Zuo
,
M. J.
,
2017
, “
Prognostics of Rolling Element Bearings With the Combination of Paris Law and Reliability Method
,” 2017 Prognostics and System Health Management Conference (PHM-Harbin), IEEE, pp.
1
6
.
6.
Hu
,
X.
,
Xu
,
L.
,
Lin
,
X.
, and
Pecht
,
M.
,
2020
, “
Battery Lifetime Prognostics
,”
Joule
,
4
(
2
), pp.
310
346
.
7.
Nemani
,
V. P.
,
Thelen
,
A.
,
Hu
,
C.
, and
Daining
,
S.
,
2022
, “
Dynamically Weighted Ensemble of Diverse Learners for Remaining Useful Life Prediction
,”
ASME 2022 International Design Engineering Technical Conference
,
St. Louis, MO
,
Aug 14– 17
, pp.
1
8
.
8.
Saha
,
B.
,
Goebel
,
K.
,
Poll
,
S.
, and
Christophersen
,
J.
,
2009
, “
Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework
,”
IEEE Trans. Instrum. Meas.
,
58
(
2
), pp.
291
296
.
9.
Wang
,
D.
, and
Tsui
,
K. L.
,
2017
, “
Statistical Modeling of Bearing Degradation Signals
,”
IEEE Trans. Reliab.
,
66
(
4
), pp.
1331
1344
.
10.
Tang
,
S.
,
Yu
,
C.
,
Wang
,
X.
,
Guo
,
X.
, and
Si
,
X.
,
2014
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process With Measurement Error
,”
Energies
,
7
(
2
), pp.
520
547
.
11.
Zhai
,
Q.
, and
Ye
,
Z. S.
,
2017
, “
RUL Prediction of Deteriorating Products Using an Adaptive Wiener Process Model
,”
IEEE Trans. Ind. Informatics
,
13
(
6
), pp.
2911
2921
.
12.
Attia
,
P. M.
,
Chueh
,
W. C.
, and
Harris
,
S. J.
,
2020
, “
Revisiting the t 0.5 Dependence of SEI Growth
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090535
.
13.
Miao
,
Q.
,
Xie
,
L.
,
Cui
,
H.
,
Liang
,
W.
, and
Pecht
,
M.
,
2013
, “
Remaining Useful Life Prediction of Lithium-Ion Battery With Unscented Particle Filter Technique
,”
Microelectron. Reliab.
,
53
(
6
), pp.
805
810
.
14.
Muetze
,
A.
, and
Strangas
,
E. G.
,
2015
, “
The Useful Life of Interver-Based Drive Bearings
”, no.
May
2016
, pp.
63
73
.
15.
Yu
,
W. K.
, and
Harris
,
T. A.
,
2001
, “
A New Stress-Based Fatigue Life Model for Ball Bearings
,”
Tribol. Trans.
,
44
(
1
), pp.
11
18
.
16.
Brown
,
J.
,
Wang
,
G.
,
Scott
,
E.
,
Brown
,
J.
,
Schmidt
,
C.
, and
Howard
,
W.
,
2005
, “
A Practical Longevity Model for Lithium-Ion Batteries: De-Coupling the Time and Cycle-Dependence of Capacity Fade
,”
ECS Meet. Abstr.
,
MA2005-02
(
4
), pp.
1
2
.
17.
Wang
,
Y.
,
Peng
,
Y.
,
Zi
,
Y.
,
Jin
,
X.
, and
Tsui
,
K. L.
,
2016
, “
A Two-Stage Data-Driven-Based Prognostic Approach for Bearing Degradation Problem
,”
IEEE Trans. Ind. Informatics
,
12
(
3
), pp.
924
932
.
18.
Qian
,
Y.
,
Yan
,
R.
,
Member
,
S.
, and
Hu
,
S.
,
2014
, “
Bearing Degradation Evaluation Using Recurrence Quantification Analysis and Kalman Filter
,”
IEEE Trans. Instrum. Meas.
,
63
(
11
), pp.
2599
2610
.
19.
Walker
,
E.
,
Rayman
,
S.
, and
White
,
R. E.
,
2015
, “
Comparison of a Particle Filter and Other State Estimation Methods for Prognostics of Lithium-Ion Batteries
,”
J. Power Sources.
,
287
, pp.
1
12
.
20.
He
,
W.
,
Williard
,
N.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2011
, “
Prognostics of Lithium-Ion Batteries Based on Dempster-Shafer Theory and the Bayesian Monte Carlo Method
,”
J. Power Sources
,
196
(
23
), pp.
10314
10321
.
21.
Wang
,
D.
,
Miao
,
Q.
, and
Pecht
,
M.
,
2013
, “
Prognostics of Lithium-Ion Batteries Based on Relevance Vectors and a Conditional Three-Parameter Capacity Degradation Model
,”
J. Power Sources
,
239
, pp.
253
264
.
22.
Singleton
,
R. K.
,
Strangas
,
E. G.
, and
Aviyente
,
S.
,
2015
, “
Extended Kalman Filtering for Remaining-Useful-Life Estimation of Bearings
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1781
1790
.
23.
Cui
,
L.
,
Wang
,
X.
,
Xu
,
Y.
,
Jiang
,
H.
, and
Zhou
,
J.
,
2019
, “
A Novel Switching Unscented Kalman Filter Method for Remaining Useful Life Prediction of Rolling Bearing
,”
Meas. J. Int. Meas. Confed.
,
135
, pp.
678
684
.
24.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.
25.
Plett
,
G. L.
,
2006
, “
Sigma-Point Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs. Part 2: Simultaneous State and Parameter Estimation
,”
J. Power Sources
,
161
(
2
), pp.
1369
1384
.
26.
Gebraeel
,
N.
,
Lawley
,
M.
,
Liu
,
R.
, and
Parmeshwaran
,
V.
,
2004
, “
Residual Life Predictions From Vibration-Based Degradation Signals: A Neural Network Approach
,”
IEEE Trans. Ind. Electron.
,
51
(
3
), pp.
694
700
.
27.
Huang
,
R.
,
Xi
,
L.
,
Li
,
X.
,
Richard Liu
,
C.
,
Qiu
,
H.
, and
Lee
,
J.
,
2007
, “
Residual Life Predictions for Ball Bearings Based on Self-Organizing Map and Back Propagation Neural Network Methods
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
193
207
.
28.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
, pp.
98
109
.
29.
Benkedjouh
,
T.
,
Medjaher
,
K.
,
Zerhouni
,
N.
, and
Rechak
,
S.
,
2013
, “
Remaining Useful Life Estimation Based on Nonlinear Feature Reduction and Support Vector Regression
,”
Eng. Appl. Artif. Intell.
,
26
(
7
), pp.
1751
1760
.
30.
Loutas
,
T. H.
,
Roulias
,
D.
, and
Georgoulas
,
G.
,
2013
, “
Remaining Useful Life Estimation in Rolling Bearings Utilizing Data-Driven Probabilistic E-Support Vectors Regression
,”
IEEE Trans. Reliab.
,
62
(
4
), pp.
821
832
.
31.
Di Maio
,
F.
,
Tsui
,
K. L.
, and
Zio
,
E.
,
2012
, “
Combining Relevance Vector Machines and Exponential Regression for Bearing Residual Life Estimation
,”
Mech. Syst. Signal Process.
,
31
, pp.
405
427
.
32.
Wang
,
B.
,
Lei
,
Y.
,
Li
,
N.
, and
Yan
,
T.
,
2019
, “
Deep Separable Convolutional Network for Remaining Useful Life Prediction of Machinery
,”
Mech. Syst. Signal Process.
,
134
, p.
106330
.
33.
Hinchi
,
A. Z.
, and
Tkiouat
,
M.
,
2018
, “
Rolling Element Bearing Remaining Useful Life Estimation Based on a Convolutional Long-Short-Term Memory Network
,”
Procedia Comput. Sci.
,
127
, pp.
123
132
.
34.
Li
,
X.
,
Zhang
,
W.
, and
Ding
,
Q.
,
2019
, “
Deep Learning-Based Remaining Useful Life Estimation of Bearings Using Multi-Scale Feature Extraction
,”
Reliab. Eng. Syst. Saf.
,
182
, pp.
208
218
.
35.
Park
,
K.
,
Choi
,
Y.
,
Choi
,
W. J.
,
Ryu
,
H. Y.
, and
Kim
,
H.
,
2020
, “
LSTM-Based Battery Remaining Useful Life Prediction With Multi-channel Charging Profiles
,”
IEEE Access
,
8
, pp.
20786
20798
.
36.
Liao
,
L.
, and
Köttig
,
F.
,
2016
, “
A Hybrid Framework Combining Data-Driven and Model-Based Methods for System Remaining Useful Life Prediction
,”
Appl. Soft Comput. J.
,
44
, pp.
191
199
.
37.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
38.
Nemani
,
V. P.
,
Lu
,
H.
,
Thelen
,
A.
,
Hu
,
C.
, and
Zimmerman
,
A. T.
,
2022
, “
Ensembles of Probabilistic LSTM Predictors and Correctors for Bearing Prognostics Using Industrial Standards
,”
Neurocomputing
,
491
, pp.
575
596
.
39.
Hu
,
C.
,
Youn
,
B. D.
,
Wang
,
P.
, and
Taek Yoon
,
J.
,
2012
, “
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life
,”
Reliab. Eng. Syst. Saf.
,
103
, pp.
120
135
.
40.
Li
,
Z.
,
Wu
,
D.
,
Hu
,
C.
, and
Terpenny
,
J.
,
2019
, “
An Ensemble Learning-Based Prognostic Approach With Degradation-Dependent Weights for Remaining Useful Life Prediction
,”
Reliab. Eng. Syst. Saf.
,
184
, pp.
110
122
.
41.
Xia
,
T.
,
Song
,
Y.
,
Zheng
,
Y.
,
Pan
,
E.
, and
Xi
,
L.
,
2020
, “
An Ensemble Framework Based on Convolutional Bi-Directional LSTM With Multiple Time Windows for Remaining Useful Life Estimation
,”
Comput. Ind.
,
115
, p.
103182
.
42.
Shi
,
J.
,
Yu
,
T.
,
Goebel
,
K.
, and
Wu
,
D.
,
2021
, “
Remaining Useful Life Prediction of Bearings Using Ensemble Learning: The Impact of Diversity in Base Learners and Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021004
.
43.
Terejanu
,
G. A.
,
2011
, “
Unscented Kalman Filter Tutorial
,”
Univ. Buffalo, Dep. Comput. Sci. Eng. NY
, no.
1
, pp.
1
6
.
44.
Wan
,
E. A.
, and
Van Der Merwe
,
R.
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
Technology
,
7
(
3
), pp.
3
8
.
45.
Pau
,
D.
,
Denaro
,
D.
,
Gruosso
,
G.
, and
Sahnoun
,
A.
,
2021
, “
Microcontroller Architectures for Battery State of Charge Prediction With Tiny Neural Networks
,”
IEEE International Conference Consumer Electronics (ICCE-Berlin)
,
Berlin, Germany
,
Nov. 15–18
.
46.
Cheng
,
Y.
,
Wu
,
J.
,
Zhu
,
H.
,
Or
,
S. W.
, and
Shao
,
X.
,
2021
, “
Remaining Useful Life Prognosis Based on Ensemble Long Short-Term Memory Network
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
12
.
47.
Lu
,
H.
,
Barzegar
,
V.
,
Nemani
,
V. P.
,
Hu
,
C.
,
Laflamme
,
S.
, and
Zimmerman
,
A. T.
,
2022
, “
Joint Training of a Predictor Network and a Generative Adversarial Network for Time Series Forecasting: A Case Study of Bearing Prognostics
,”
Expert Syst. Appl.
,
203
, p.
117415
.
48.
Malhotra
,
P.
,
2016
, “
Multi-Sensor Prognostics Using an Unsupervised Health Index Based on LSTM Encoder-Decoder
”, [Online]. Available: http://arxiv.org/abs/1608.06154
49.
Yuan
,
M.
,
Wu
,
Y.
, and
Lin
,
L.
,
2016
, “
Fault Diagnosis and Remaining Useful Life Estimation of Aero Engine Using LSTM Neural Network
,” pp.
135
140
.
50.
Liu
,
Y.
,
Zhao
,
G.
, and
Peng
,
X.
,
2019
, “
Deep Learning Prognostics for Lithium-Ion Battery Based on Ensembled Long Short-Term Memory Networks
,”
IEEE Access
,
7
(
Mcmc
), pp.
155130
155142
.
51.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
52.
Attia
,
P. M.
,
Grover
,
A.
,
Jin
,
N.
,
Severson
,
K. A.
,
Markov
,
T. M.
,
Liao
,
Y.-H.
,
Chen
,
M. H.
, et al
,
2020
, “
Closed-Loop Optimization of Fast-Charging Protocols for Batteries With Machine Learning
,”
Nature
,
578
(
7795
), pp.
397
402
.
53.
Wang
,
B.
,
Lei
,
Y.
,
Li
,
N.
, and
Li
,
N.
,
2020
, “
A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings
,”
IEEE Trans. Reliab.
,
69
(
1
), pp.
401
412
.
54.
Thelen
,
A.
,
Li
,
M.
,
Hu
,
C.
,
Bekyarova
,
E.
,
Kalinin
,
S.
, and
Sanghadasa
,
M.
,
2022
, “
Augmented Model-Based Framework for Battery Remaining Useful Life Prediction
,”
Appl. Energy
,
324
, p.
119624
.
You do not currently have access to this content.