Abstract

A novel algorithm is presented to aid designers during the conceptual design phase of a new engineering product by rapidly assessing new areas of the design space. The algorithm presented here develops a polynomial chaos-based meta-model that allows the designer to estimate the probability distribution for a candidate design’s performance without requiring additional experiments or simulations. Probabilistic equivalence is used to map either a probability density function or a cumulative distribution function, continuous functions, into a reduced space in which interpolation functions can be developed. Data harvested from experiments or evaluations of an expensive computer code are used to train the meta-model. An advantage of this method over other histogram interpolation methods is that it is non-parametric: the training data are not assumed to belong to a particular family of probability distribution. The algorithm was validated using a standard benchmark test with synthetic data in a continuous-discrete design space. Finally, we exploited the variance of the Gaussian process emulators used as interpolation functions in order to develop a statistic that quantified the level of uncertainty associated with the algorithm’s estimates. This is a key feature if the algorithm is to be of practical use.

References

1.
Mavris
,
D.
, and
DeLaurentis
,
D.
,
2000
, “
Methodology for Examining the Simultaneous Impact of Requirements, Vehicle Characteristics, and Technologies on Military Aircraft Design
,” ICAS,
Harrogate, UK
, pp.
27
31
.
2.
Saravi
,
M.
,
Newnes
,
L.
,
Mileham
,
A.
, and
Goh
,
Y.
,
2008
,
Collaborative Product and Service Life Cycle Management for a Sustainable World
,
R.
Curran
,
S.
Chou
, and
A.
Trappey
, eds.,
Springer
,
London
, pp.
123
130
.
3.
Frank
,
C.
,
Marlier
,
R.
,
Pinon-Fischer
,
O.
, and
Mavris
,
D.
,
2018
, “
Evolutionary Multi-objective Multi-architecture Design Space Exploration Methodology
,”
Optim. Eng.
,
19
(
2
), pp.
359
381
.
4.
Ölvander
,
J.
,
Lundéna
,
B.
, and
Gavel
,
H.
,
2009
, “
A Computerized Optimization Framework for the Morphological Matrix Applied to Aircraft Conceptual Design
,”
Comput. Aided Des.
,
41
(
3
), pp.
187
196
.
5.
Bunnel
,
S.
,
Thelin
,
C.
,
Bird
,
G.
,
Salmon
,
J.
, and
Gorrell
,
S.
,
2020
, “
Structural Design Space Exploration Using Principal Component Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061014
.
6.
Bussemaker
,
J.
,
Ciampa
,
P.
, and
Nagel
,
B.
,
2020
, “
System Architecture Design Space Exploration: An Approach to Modeling and Optimization
,”
AIAA Aviation 2020 Forum
,
Virtual
,
June 15–19
.
7.
Singer
,
D.
,
Doerry
,
N.
, and
Buckley
,
M.
,
2009
, “
What is Set-Based Design?
Naval Eng. J.
,
121
(
4
), pp.
31
43
.
8.
Guenov
,
M.
,
Nunez
,
M.
,
Molina-Cristobal
,
A.
,
Datta
,
V.
, and
Riaz
,
A.
,
2014
, “
Aircadia—An Interactive Tool for the Composition and Exploration of Aircraft Computational Studies at Early Design Stage
,”
Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences
,
St. Petersburg, Russia
,
January
, pp.
1
12
.
9.
Georgiades
,
A.
,
Sharma
,
S.
,
Kipouros
,
T.
, and
Savill
,
M.
,
2019
, “
Adopt: An Augmented Set-Based Design Framework With Optimisation
,”
Des. Sci.
,
5
(
e4
), pp.
1
40
.
10.
Pimentel
,
A. D.
,
2017
, “
Exploring Exploration: A Tutorial Introduction to Embedded Systems Design Space Exploration
,”
IEEE Des. Test
,
34
(
1
), pp.
77
90
.
11.
Gries
,
M.
,
2004
, “
Methods for Evaluating and Covering the Design Space During Early Design Development
,”
Integration
,
38
(
2
), pp.
131
183
.
12.
Xiong
,
Y.
,
Duong
,
P. L. T.
,
Wang
,
D.
,
Park
,
S.-I.
,
Ge
,
Q.
,
Raghavan
,
N.
, and
Rosen
,
D. W.
,
2019
, “
Data-Driven Design Space Exploration and Exploitation for Design for Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101101
.
13.
Herzog
,
V. D.
, and
Suwelack
,
S.
,
2022
, “
Data-Efficient Machine Learning on 3d Engineering Data
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021709
.
14.
Schulz
,
A.
,
Xu
,
J.
,
Zhu
,
B.
,
Zheng
,
C.
,
Grinspun
,
E.
, and
Matusik
,
W.
,
2017
, “
Interactive Design Space Exploration and Optimization for CAD Models
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
14
.
15.
Ipek
,
E.
,
McKee
,
S. A.
,
Singh
,
K.
,
Caruana
,
R.
,
Supinski
,
B. R. D.
, and
Schulz
,
M.
,
2008
, “
Efficient Architectural Design Space Exploration Via Predictive Modeling
,”
ACM. Trans. Architect. Code Optim.
,
4
(
4
), pp.
1
34
.
16.
Parnell
,
G.
,
Specking
,
E.
,
Goerger
,
S.
,
Cilli
,
M.
, and
Pohl
,
E.
,
2019
, “
Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions
,”
INCOSE Inter. Sympos.
,
29
(
7
), pp.
371
383
.
17.
Read
,
A.
,
1999
, “
Linear Interpolation of Histograms
,”
Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers Detectors Assoc. Equipment
,
425
(
1–2
), pp.
357
360
.
18.
Baak
,
M.
,
Gadatsch
,
S.
,
Harrington
,
R.
, and
Verkerke
,
W.
,
2015
, “
Interpolation Between Multi-Dimensional Histograms Using a New Non-linear Moment Morphing Method
,”
Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers Detectors Assoc. Equipment
,
771
, pp.
39
48
.
19.
Baldi
,
P.
,
2012
, “
Autoencoders, Unsupervised Learning, and Deep Architectures
,”
Proc. ICML Works. Unsuperv. Transfer Learn.
,
27
, pp.
37
49
.
20.
Schöbi
,
R.
,
Sudret
,
B.
, and
Wiart
,
J.
,
2015
, “
Polynomial-Chaos-Based-Kriging
,”
Int. J. Uncertain. Quant.
,
5
(
2
), pp.
171
193
.
21.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2016
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE ASME J. Risk Uncertain. Eng. Syst. Part A: Civil Eng.
,
3
(
2
), p.
D4016002
.
22.
Thimmisetty
,
C.
,
Aminzadeh
,
F.
,
Rose
,
K.
, and
Ghanem
,
R.
,
2018
, “
Multiscale Stochastic Representations Using Polynomial Chaos Expansions With Gaussian Process Coefficients
,”
Data Enabled Discov. Appl.
,
2
(
1
), p.
00154
.
23.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
24.
Cameron
,
R.
, and
Martin
,
W.
,
1947
, “
The Orthogonal Development of Nonlinear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
,
48
, pp.
385
392
.
25.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
26.
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2012
, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
179
190
.
27.
Ahlfeld
,
R.
,
Ciampoli
,
F.
,
Pietropaoli
,
M. N.
, and
Montomoli
,
F.
,
2019
, “
Data-Driven Uncertainty Quantification for Formula 1: Diffuser, Wing Tip and Front Wing Variations
,”
Proc. IMechE Part D: J. Auto. Eng.
,
233
(
6
), pp.
1495
1506
.
28.
Eldred
,
M.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,” AIAA,
Orlando, FL
,
Jan. 5–8
, p.
376
.
29.
Bowman
,
A.
,
1984
, “
An Alternative Method of Cross-Validation for the Smoothing of Density Estimates
,”
Biometrics
,
71
(
2
), pp.
353
360
.
30.
Jones
,
M.
,
Marron
,
J.
, and
Sheather
,
J.
,
1996
, “
A Brief Survey of Bandwidth Selection for Density Estimation
,”
J. Am. Stat. Assoc.
,
91
(
433
), pp.
401
407
.
31.
Arnst
,
M.
, and
Ghanem
,
R.
,
2008
, “
Probabilistic Equivalence and Stochastic Model Reduction in Multi-Scale Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
43-44
), pp.
3584
3592
.
32.
Choi
,
S.
,
Gorguluarslan
,
R.
,
Park
,
S.
,
Stone
,
T.
,
Moon
,
J.
, and
Rosen
,
D.
,
2015
, “
Simulation-Based Uncertainty Quantification for Additively Manufactured Cellular Structures
,”
J. Electron. Mater.
,
44
(
10
), pp.
4035
4041
.
33.
Pepper
,
N.
,
Montomoli
,
F.
, and
Sharma
,
S.
,
2019
, “
Multiscale Uncertainty Quantification With Arbitrary Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
,
357
, pp.
1
20
.
34.
Kullback
,
S.
, and
Leibler
,
R.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
, pp.
79
86
.
35.
Pepper
,
N.
,
Montomoli
,
F.
, and
Sharma
,
S.
,
2021
, “
Identification of Missing Input Distributions With an Inverse Multi-Modal Polynomial Chaos Approach Based on Scarce Data
,”
Probab. Eng. Mech.
,
65
, p.
103138
.
36.
Pepper
,
N.
,
Montomoli
,
F.
,
Giacomel
,
F.
,
Pinelli
,
M.
,
Casari
,
N.
, and
Sharma
,
S.
,
2020
, “
Multiscale Uncertainty Quantification With Arbitrary Polynomial Chaos
,”
ASME Turbo Expo
,
Virtual
,
October
37.
Mao
,
K. Z.
,
2004
, “
Orthogonal Forward Selection and Backward Elimination Algorithms for Feature Subset Selection
,”
IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.)
,
34
(
1
), pp.
629
634
.
38.
Dwight
,
R.
, and
Han
,
Z.
,
2009
, “
Efficient Uncertainty Quantification Using Gradient-Enhanced Kriging
,”
11th AIAA Non-Deterministic Approaches Conference
,
Palm Springs, CA
,
May 4–7
, Paper 2276.
39.
Lockwood
,
B.
, and
Anitescu
,
M.
,
2012
, “
Gradient-Enhanced Universal Kriging for Uncertainty Propagation
,”
Nucl. Sci. Eng.
,
170
(
2
), pp.
168
195
.
40.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
232
240
.
41.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscipl Optim
,
44
, pp.
673
690
.
42.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
43.
Santner
,
T.
,
Williams
,
B.
, and
Notz
,
W.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
44.
Moore
,
C.
,
Chua
,
A.
,
Berry
,
C.
, and
Gair
,
J.
,
2016
, “
Fast Methods for Training Gaussian Processes on Large Datasets
,”
R. Soc. Open Sci.
,
3
(
5
), p.
160125
.
45.
Petelin
,
D.
,
Filipič
,
B.
, and
Kocijan
,
J.
,
2011
,
Adaptive and Natural Computing Algorithms
,
A.
Dobnikar
,
U.
Lotrič
, and
B.
Šter
, eds.,
Springer
,
Berlin
, pp.
420
429
.
46.
Eldred
,
M.
,
Agarwal
,
H.
,
Perez
,
V.
,
Wojtkiewicz Jr
,
S. F.
, and
Renaud
,
J.
,
2007
, “
Investigation of Reliability Method Formulations in DAKOTA/UQ
,”
Struct. Infrastruct. Eng.
,
3
(
3
), pp.
199
213
.
47.
Wu
,
Y.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
,
2001
, “
Safety-Factor Based Approach for Probability-Based Design Optimization
,”
Proc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Anaheim, CA
,
June 11–14
, Vol.
196
, pp.
199
342
.
48.
Huang
,
M. W.
, and
Arora
,
J. S.
,
1997
, “
Optimal Design With Discrete Variables: Some Numerical Examples
,”
Int. J. Numer. Methods Eng.
,
40
(
1
), pp.
165
188
.
49.
Pronzato
,
L.
, and
Müller
,
W.
,
2012
, “
Design of Computer Experiments: Space Filling and Beyond
,”
Stat. Comput.
,
22
(
3
), pp.
681
701
.
50.
Liu
,
H.
,
Ong
,
Y.
, and
Cai
,
J.
,
2018
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
393
416
.
51.
Deschrijver
,
D.
,
Crombecq
,
K.
,
Nguyen
,
H.
, and
Dhaene
,
T.
,
2011
, “
Adaptive Sampling Algorithm for Macromodeling of Parameterized S-parameter Responses
,”
IEEE Trans. Mirco. Theory Tech.
,
59
(
1
), pp.
39
45
.
52.
Pepper
,
N.
,
Crespo
,
L.
, and
Montomoli
,
F.
,
2021
, “
Adaptive Learning for Reliability Analysis With Support Vector Machines
,”
European Safety and Reliability Conference (ESREL)
,
Angers, France
,
Sept. 19–23
, pp.
242
249
.
53.
Friedman
,
J. H.
,
Bentely
,
J.
, and
Finkel
,
R. A.
,
1977
, “
An Algorithm for Finding Best Matches in Logarithmic Expected Time
,”
ACM Trans. Math. Soft.
,
3
(
9
), pp.
209
226
.
54.
Bhattacharyya
,
A.
,
1943
, “
On a Measure of Divergence Between Two Statistical Populations Defined by Their Probability Distributions
,”
Bull. Calcutta Math. Soc.
,
35
, pp.
99
109
.
55.
Inman
,
H.
, and
Bradley
,
E.
,
1989
, “
The Overlapping Coefficient as a Measure of Agreement Between Probability Distributions and Point Estimation of the Overlap of Two Normal Densities
,”
Commun. Stat. Theory Methods
,
18
(
10
), pp.
3851
3874
.
You do not currently have access to this content.