Abstract

This paper proposes a novel density-based method for structural design considering restrictions of multi-axis machining processes. A new mathematical formulation based on Heaviside function is presented to transform the design field into a geometry which can be manufactured by multi-axis machining process. The formulation is developed for 5-axis machining, which can be also applied to 2.5D milling restriction. The filter techniques are incorporated to effectively control the minimum size of void region. The proposed method is demonstrated by solving the compliance minimization problem for different machinable freeform designs. The length to diameter (L:D) ratio geometric constraint is introduced to ensure the machinable design, where deep hole or narrow chamber features are avoided using proposed method. Several two- and three-dimensional numerical examples are presented and discussed in detail.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
6
), pp.
767
784
.
3.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
4.
Subedi
,
S. C.
,
Verma
,
C. S.
, and
Suresh
,
K.
,
2020
, “
A Review of Methods for the Geometric Post-Processing of Topology Optimized Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p. 060801.
5.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p. 081009.
6.
Zhang
,
W.
,
Chen
,
J.
,
Zhu
,
X.
,
Zhou
,
J.
,
Xue
,
D.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
7.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1243
1260
.
8.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
9.
Norato
,
J.
,
Haber
,
R.
,
Tortorelli
,
D.
, and
Bendsøe
,
M. P.
,
2004
, “
A Geometry Projection Method for Shape Optimization
,”
Int. J. Numer. Methods Eng.
,
60
(
14
), pp.
2289
2312
.
10.
Zhang
,
S.
,
Gain
,
A. L.
, and
Norato
,
J. A.
,
2017
, “
Stress-Based Topology Optimization With Discrete Geometric Components
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
1
21
.
11.
Deng
,
H.
, and
To
,
A. C.
,
2020
, “
Linear and Nonlinear Topology Optimization Design With Projection-Based Ground Structure Method (P-GSM)
,”
Int. J. Numer. Methods Eng.
,
121
(
11
), pp.
2437
2461
.
12.
Deng
,
H.
,
2019
, “
A Heaviside Function-Based Density Representation Algorithm for Truss-Like Buckling-Induced Mechanism Design
,”
Int. J. Numer. Methods Eng.
,
119
(
11
), pp.
1069
1097
.
13.
Deng
,
H.
,
Hinnebusch
,
S.
, and
To
,
A. C.
,
2020
, “
Topology Optimization Design of Stretchable Metamaterials With Bézier Skeleton Explicit Density (BSED) Representation Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113093
.
14.
Deng
,
H.
, and
To
,
A. C.
,
2021
, “
Projection-Based Implicit Modeling Method (PIMM) for Functionally Graded Lattice Optimization
,”
JOM
,
73
(
3
) pp.
2012
2021
.
15.
Deng
,
H.
, and
To
,
A. C.
,
2021
, “
A Density-Based Boundary Evolving Method for Buckling-Induced Design Under Large Deformation
,”
Int. J. Numer. Methods Eng
,
122
(
7
), pp.
1770
1796
.
16.
Cuillière
,
J. C.
,
Francois
,
V.
, and
Drouet
,
J. M.
,
2014
, “
Towards the Integration of Topology Optimization Into the CAD Process
,”
Comput.-Aided Des. Appl.
,
11
(
2
), pp.
120
140
.
17.
Yoely
,
Y. M.
,
Amir
,
O.
, and
Hanniel
,
I.
,
2018
, “
Topology and Shape Optimization With Explicit Geometric Constraints Using a Spline-Based Representation and a Fixed Grid
,”
Procedia Manuf.
,
21
, pp.
189
196
.
18.
Liu
,
J.
, and
Ma
,
Y.-S.
,
2015
, “
3D Level-Set Topology Optimization: A Machining Feature-Based Approach
,”
Struct. Multidiscipl. Optim.
,
52
(
3
), pp.
563
582
.
19.
Liu
,
J.
, and
To
,
A. C.
,
2020
, “
Computer-Aided Design-Based Topology Optimization System With Dynamic Feature Shape and Modeling History Evolution
,”
ASME J. Mech. Des.
,
142
(
7
), p. 071704.
20.
Mirzendehdel
,
A. M.
,
Behandish
,
M.
, and
Nelaturi
,
S.
,
2020
, “
Topology Optimization With Accessibility Constraint for Multi-Axis Machining
,”
Comput.-Aided Des.
,
122
, p.
102825
.
21.
Morris
,
N.
,
Butscher
,
A.
, and
Iorio
,
F.
,
2020
, “
A Subtractive Manufacturing Constraint for Level Set Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
61
, pp.
1
16
.
22.
Langelaar
,
M.
,
2019
, “
Topology Optimization for Multi-Axis Machining
,”
Comput. Methods Appl. Mech. Eng.
,
351
, pp.
226
252
.
23.
Kreisselmeier
,
G.
, and
Steinhauser
,
R.
,
1980
, “Systematic Control Design by Optimizing a Vector Performance Index,”
Computer Aided Design of Control Systems
,
Elsevier
,
New York
, pp.
113
117
.
24.
Mirzendehdel
,
A. M.
,
Behandish
,
M.
, and
Nelaturi
,
S.
,
2021
, “
Optimizing Build Orientation for Support Removal Using Multi-Axis Machining
,”
Comput. Graph.
,
99
, pp.
247
258
.
25.
Mirzendehdel
,
A. M.
,
Behandish
,
M.
, and
Nelaturi
,
S.
,
2021
, “Topology Optimization for Manufacturing With Accessible Support Structures,” arXiv preprint arXiv:2108.02829.
26.
Gersborg
,
A. R.
, and
Andreasen
,
C. S.
,
2011
, “
An Explicit Parameterization for Casting Constraints in Gradient Driven Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
44
(
6
), pp.
875
881
.
27.
Li
,
Q.
,
Chen
,
W.
,
Liu
,
S.
, and
Fan
,
H.
,
2018
, “
Topology Optimization Design of Cast Parts Based on Virtual Temperature Method
,”
Comput.-Aided Des.
,
94
, pp.
28
40
.
28.
Xia
,
Q.
,
Shi
,
T.
,
Wang
,
M. Y.
, and
Liu
,
S.
,
2010
, “
A Level Set Based Method for the Optimization of Cast Part
,”
Struct. Multidiscipl. Optim.
,
41
(
5
), pp.
735
747
.
29.
Wang
,
Y.
, and
Kang
,
Z.
,
2017
, “
Structural Shape and Topology Optimization of Cast Parts Using Level Set Method
,”
Int. J. Numer. Methods Eng.
,
111
(
13
), pp.
1252
1273
.
30.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
.
31.
Overby
,
A.
,
2010
,
CNC Machining Handbook: Building, Programming, and Implementation
,
McGraw-Hill, Inc.
,
New York
.
32.
Kim
,
T. S.
,
Kim
,
J. E.
,
Jeong
,
J. H.
, and
Kim
,
Y. Y.
,
2004
, “
Filtering Technique to Control Member Size in Topology Design Optimization
,”
KSME Int. J.
,
18
(
2
), pp.
253
261
.
33.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
.
34.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4–5
), pp.
401
424
.
You do not currently have access to this content.