Abstract

This article presents a novel ankle rehabilitation exoskeleton for poststroke patients, the rotational center of which can automatically conform to each individual user’s ankle complex, once they wear the exoskeleton; this property always holds regardless of the point at which the exoskeleton is attached to the human shank. This exoskeleton has 2 rotation degree-of-freedoms (DOFs) and is able to provide 2 different rotation patterns via reconfiguration. In the combined-rotation pattern arrangement, the mechanism can generate all three kinds of rotations that the ankle complex is naturally capable of realizing. Among these rotational motions, the adduction/abduction rotation is a coupled motion. This rotation can be further reduced, or eliminated, by minimizing the distance between the lower connection points of the actuated links and the human ankle complex, and vice versa. For the other rotation pattern, a 90-degree arrangement of the side link offers decoupled motion control of the mechanism. Numerical studies reveal that the required rehabilitation workspace for dynamical gait exercises can be achieved with high dexterity, without generating singularities. Further investigations indicate that this mechanism has great potential for rehabilitating poststroke patients of a wide range of heights and weights.

References

1.
Johnson
,
W.
,
Onuma
,
O.
,
Owolabi
,
M.
, and
Sachdev
,
S.
,
2016
, “
Stroke: A Global Response Is Needed
,”
Bull. W. H. O.
,
94
(
9
), pp.
634A
635A
.
2.
Stinear
,
C. M.
,
Lang
,
C. E.
,
Zeiler
,
S.
, and
Byblow
,
W. D.
,
2020
, “
Advances and Challenges in Stroke Rehabilitation
,”
Lancet Neurol.
,
19
(
4
), pp.
348
360
.
3.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Robot.
,
2011
(
2
), pp.
1
11
.
4.
Meng
,
W.
,
Liu
,
Q.
,
Zhou
,
Z.
,
Ai
,
Q.
,
Sheng
,
B.
, and
Xie
,
S. S.
,
2015
, “
Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation
,”
Mechatronics
,
31
, pp.
132
145
.
5.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1216
1227
.
6.
Huo
,
W.
,
Mohammed
,
S.
,
Moreno
,
J. C.
, and
Amirat
,
Y.
,
2016
, “
Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art
,”
IEEE Syst. J.
,
10
(
3
), pp.
1068
1081
.
7.
Girone
,
M. J.
,
Burdea
,
G. C.
, and
Bouzit
,
M.
,
1999
, “
‘Rutgers Ankle’ Orthopedic Rehabilitation Interface
,”
Am. Soc. Mech. Eng. Dyn. Syst. Cont. Div. DSC
,
67
, pp.
305
312
.
8.
Dai
,
J. S.
, and
Massicks
,
C. P.
,
1999
, “
An Equilateral Ankle Rehabilitation Device Based on Parallel Mechanisms
,”
BMC Psychiatry
,
12
(
1
), pp.
229
.
9.
Dai
,
J. S.
,
Zhao
,
T.
, and
Nester
,
C.
,
2004
, “
Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of a Robotic Rehabilitation Device
,”
Auton. Robot
,
16
(
2
), pp.
207
218
.
10.
Liu
,
G.
,
Gao
,
J.
,
Yue
,
H.
,
Zhang
,
X.
, and
Lu
,
G.
,
2006
, “
Design and Kinematics Simulation of Parallel Robots for Ankle Rehabilitation
,”
2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006
,
Luoyang
,
June 25−28
, pp.
1109
1113
.
11.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.
12.
Tsoi
,
Y. H.
,
Xie
,
S. Q.
, and
Graham
,
A. E.
,
2009
, “
Design, Modeling and Control of an Ankle Rehabilitation Robot
,”
Stud. Comput. Intell.
,
177
, pp.
377
399
.
13.
Zhang
,
M.
,
Cao
,
J.
,
Zhu
,
G.
,
Miao
,
Q.
,
Zeng
,
X.
, and
Xie
,
S. Q.
,
2017
, “
Reconfigurable Workspace and Torque Capacity of a Compliant Ankle Rehabilitation Robot (CARR)
,”
Rob. Auton. Syst.
,
98
, pp.
213
221
.
14.
Malosio
,
M.
,
Negri
,
S. P.
,
Pedrocchi
,
N.
,
Vicentini
,
F.
,
Caimmi
,
M.
, and
Molinari Tosatti
,
L.
,
2012
, “
A Spherical Parallel Three Degrees-of-Freedom Robot for Ankle-Foot Neuro-Rehabilitation
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
San Diego, CA
,
Aug. 28–Sept. 1
, pp.
3356
3359
.
15.
Du
,
Y.
,
Li
,
R.
,
Li
,
D.
, and
Bai
,
S.
,
2017
, “
An Ankle Rehabilitation Robot Based on 3-RRS Spherical Parallel Mechanism
,”
Adv. Mech. Eng.
,
9
(
8
), pp.
1
8
.
16.
Zhang
,
L.
,
Li
,
J.
,
Dong
,
M.
,
Fang
,
B.
,
Cui
,
Y.
,
Zuo
,
S.
, and
Zhang
,
K.
,
2019
, “
Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR)
,”
J. Healthc. Eng.
,
2019
, p.
4164790
.
17.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041003
.
18.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Zhou
,
C.
,
2015
, “
Design and Kinematic Analysis of Redundantly Actuated Parallel Mechanisms for Ankle Rehabilitation
,”
Robotica
,
33
(
2
), pp.
366
384
.
19.
Ferris
,
D. P.
,
Sawicki
,
G. S.
, and
Domingo
,
A. R.
,
2005
, “
Powered Lower Limb Orthoses for Gait Rehabilitation
,”
Top. Spinal Cord Inj. Rehabil.
,
11
(
2
), pp.
34
49
.
20.
Krebs
,
H. I.
, and
Hogan
,
N.
,
2006
, “
Therapeutic Robotics: A Technology Push
,”
Proc. IEEE
,
94
(
9
), pp.
1727
1738
.
21.
Wang
,
H.
,
Li
,
W.
,
Liu
,
H.
,
Zhang
,
J.
, and
Liu
,
S.
,
2019
, “
Conceptual Design and Dimensional Synthesis of a Novel Parallel Mechanism for Lower-Limb Rehabilitation
,”
Robotica
,
37
(
3
), pp.
469
480
.
22.
Nurahmi
,
L.
,
Caro
,
S.
, and
Solichin
,
M.
,
2019
, “
A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator
,”
Mech. Mach. Theory
,
134
, pp.
135
150
.
23.
Blaya
,
J. A.
, and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.
24.
Gordon
,
K. E.
,
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2006
, “
Mechanical Performance of Artificial Pneumatic Muscles to Power an Ankle-Foot Orthosis
,”
J. Biomech.
,
39
(
10
), pp.
1832
1841
.
25.
Costa
,
N.
, and
Caldwell
,
D. G.
,
2006
, “
Control of a Biomimetic ‘Soft-Actuated’ 10DoF Lower Body Exoskeleton
,”
IFAC Proc. Vol.
,
39
(
15
), pp.
785
790
.
26.
Yu
,
H.
,
Cruz
,
M. S.
,
Chen
,
G.
,
Huang
,
S.
,
Zhu
,
C.
,
Chew
,
E.
,
Ng
,
Y. S.
, and
Thakor
,
N. V.
,
2013
, “
Mechanical Design of a Portable Knee-Ankle-Foot Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Karlsruhe
,
May 6−10
, pp.
2183
2188
.
27.
Zanotto
,
D.
,
Stegall
,
P.
, and
Agrawal
,
S.
,
2013
, “
ALEX III: A Novel Robotic Platform for Gait Training—Design of the 4-DOF Leg
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Karlsruhe
,
May 6–10
, pp.
3914
3919
.
28.
Bortole
,
M.
,
Del Ama
,
A.
,
Rocon
,
E.
,
Moreno
,
J. C.
,
Brunetti
,
F.
, and
Pons
,
J. L.
,
2013
, “
A Robotic Exoskeleton for Overground Gait Rehabilitation
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Karlsruhe
,
May 6–10
, pp.
3356
3361
.
29.
Bacek
,
T.
,
Moltedo
,
M.
,
Langlois
,
K.
,
Prieto
,
G. A.
,
Sanchez-Villamañan
,
M. C.
,
Gonzalez-Vargas
,
J.
,
Vanderborght
,
B.
,
Lefeber
,
D.
, and
Moreno
,
J. C.
,
2017
, “
BioMot Exoskeleton—Towards a Smart Wearable Robot for Symbiotic Human-Robot Interaction
,”
IEEE International Conference on Rehabilitation Robotics.
,
London
,
July 17–20
, pp.
1666
1671
.
30.
Wu
,
X.
,
Liu
,
D. X.
,
Liu
,
M.
,
Chen
,
C.
, and
Guo
,
H.
,
2018
, “
Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1459
1470
.
31.
Eguren
,
D.
,
Cestari
,
M.
,
Luu
,
T. P.
,
Kilicarslan
,
A.
,
Steele
,
A.
, and
Contreras-Vidal
,
J. L.
,
2019
, “
Design of a Customizable, Modular Pediatric Exoskeleton for Rehabilitation and Mobility
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Bari
,
Oct. 6–9
, pp.
2411
2416
.
32.
Agrawal
,
A.
,
Sangwan
,
V.
,
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Binder-Macleod
,
S. A.
,
2007
, “
Design of a Novel Two Degree-of-Freedom Ankle-Foot Orthosis
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1137
1143
.
33.
Satici
,
A. C.
,
Erdogan
,
A.
, and
Patoglu
,
V.
,
2009
, “
Design of a Reconfigurable Ankle Rehabilitation Robot and Its Use for the Estimation of the Ankle Impedance
,”
2009 IEEE International Conference on Rehabilitation Robotics
,
Kyoto
,
June 23−26
, pp.
257
264
.
34.
Bharadwaj
,
K.
,
Sugar
,
T. G.
,
Koeneman
,
J. B.
, and
Koeneman
,
E. J.
,
2005
, “
Design of a Robotic Gait Trainer Using Spring Over Muscle Actuators for Ankle Stroke Rehabilitation
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
1009
1013
.
35.
Erdogan
,
A.
,
Celebi
,
B.
,
Satici
,
A. C.
, and
Patoglu
,
V.
,
2017
, “
Assist On-Ankle: A Reconfigurable Ankle Exoskeleton With Series-Elastic Actuation
,”
Auton. Robots
,
41
(
3
), pp.
743
758
.
36.
Chang
,
T. C.
, and
Zhang
,
X. D.
,
2019
, “
Kinematics and Reliable Analysis of Decoupled Parallel Mechanism for Ankle Rehabilitation
,”
Microelectron. Reliab.
,
99
, pp.
203
212
.
37.
Alvarez-Perez
,
M. G.
,
Garcia-Murillo
,
M. A.
, and
Cervantes-Sánchez
,
J. J.
,
2019
, “
Robot-Assisted Ankle Rehabilitation: A Review
,”
Disabil. Rehabil. Assist. Technol.
,
15
(
4
), pp.
1
15
.
38.
Sui
,
P.
,
Yao
,
L.
,
Lin
,
Z.
,
Yan
,
H.
, and
Dai
,
J. S.
,
2009
, “
Analysis and Synthesis of Ankle Motion and Rehabilitation Robots
,”
2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009
,
Guilin
,
Dec. 19–23
, pp.
2533
2538
.
39.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2005
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
40.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Null-Space Construction Using Cofactors From a Screw-Algebra Context
,”
Proc. Math. Phys. Eng. Sci.
,
458
(
2024
), pp.
1845
1866
.
41.
Contini
,
B.
,
1972
, “
Body Segment Parameters, Part II
,”
Artifical Limbs
,
16
(
1
), pp.
1
19
.
42.
Roth
,
B.
,
Angeles
,
J.
,
Hommel
,
G.
, and
Kovacs
,
P.
, eds.
1993
, “Computational Kinematics,”
Computational in Kinematics
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
3
14
.
43.
Wu
,
G.
, and
Bai
,
S.
,
2019
, “
Design and Kinematic Analysis of a 3-RRR Spherical Parallel Manipulator Reconfigured with Four–Bar Linkages
,”
Robot. Comput. Integr. Manuf.
,
56
, pp.
55
65
.
You do not currently have access to this content.