Abstract

Combined plant and control design (control co-design (CCD)) methods are often used during product development to address the synergistic coupling between the plant and control parts of a dynamic system. Recently, a few studies have started applying CCD to stochastic dynamic systems. In their most rigorous approach, reliability-based design optimization (RBDO) principles have been used to ensure solution feasibility under uncertainty. However, since existing reliability-based CCD (RBCCD) algorithms use all-at-once formulations, only most-probable-point (MPP) methods can be used as reliability analysis techniques. Though effective for linear/quadratic RBCCD problems, the use of such methods for highly nonlinear RBCCD problems introduces solution error that could lead to system failure. A multidisciplinary feasible (MDF) formulation for RBCCD problems would eliminate this issue by removing the dynamic equality constraints and instead enforcing them through forward simulation. Since the RBCCD problem structure would be similar to traditional RBDO problems, any of the well-established reliability analysis methods could be used. Therefore, in this work, a novel reliability-based MDF formulation of multidisciplinary dynamic system design optimization has been proposed for RBCCD. To quantify the uncertainty propagated by the random decision variables, Monte Carlo simulation has been applied to the generalized polynomial chaos expansion of the probabilistic constraints. The proposed formulation is applied to two engineering test problems, with the results indicating the effectiveness of both the overall formulation as well as the reliability analysis technique for RBCCD.

References

1.
Reyer
,
J. A.
,
Fathy
,
H. K.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
Comparison of Combined Embodiment Design and Control Optimization Strategies Using Optimality Conditions
,”
ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Pittsburgh, PA
,
Sept. 9–12
,
ASME
,
New York, NY
, pp.
1023
1032
.
2.
Friedland
,
B.
,
1995
,
Advanced Control System Design
,
Prentice-Hall Inc.
,
Hoboken, NJ
.
3.
Roos
,
F.
,
2007
, “
Towards a Methodology for Integrated Design of Mechatronic Servo Systems
,” PhD thesis,
Royal Institute of Technology
,
Stockholm
.
4.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsov
,
A.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
,
Arlington, VA
,
June 25–27
,
IEEE
,
Piscataway, NJ
, pp.
1864
1869
.
5.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2009
, “
On Measures of Coupling Between the Artifact and Controller Optimal Design Problems
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
,
ASME
,
New York, NY
, pp.
1363
1372
.
6.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
7.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M.
,
2018
, “Comprehensive PHEV Powertrain Co-Design Performance Studies Using MDSDO,” Advances in Structural and Multidisciplinary Optimization. WCSMO 2017, Braunschweig, June 5–9,
A.
Schumacher
,
T.
Vietor
,
S.
Fiebig
,
K. U.
Bletzinger
, and
K.
Maute
, eds.,
Springer
,
Cham
, pp.
83
97
.
8.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M. J.
,
2019
, “
PHEV Powertrain Co-Design With Vehicle Performance Considerations Using MDSDO
,”
Struct. Multidiscipl. Optim.
,
60
, pp.
1155
1169
.
9.
Baheri
,
A.
, and
Vermillion
,
C.
,
2019
, “
Combined Plant and Controller Design Using Batch Bayesian Optimization: A Case Study in Airborne Wind Energy Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
9
), p.
091013
.
10.
Nash
,
A. L.
, and
Jain
,
N.
,
2019
, “
Combined Plant and Control Co-Design for Robust Disturbance Rejection in Thermal-Fluid Systems
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2532
2539
.
11.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2018
, “
Decomposition-Based MDSDO for Co-Design of Large-Scale Dynamic Systems
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec
,
Aug. 26–29
,
ASME
,
New York, NY
, p.
V02AT03A003
.
12.
Sherbaf Behtash
,
M.
,
2018
, “
A Decomposition-Based Multidisciplinary Dynamic System Design Optimization Algorithm for Large-Scale Dynamic System Co-Design
,” Master’s thesis,
University of Cincinnati
,
Cincinnati, OH
.
13.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Decomposition-Based Optimization Algorithm for Combined Plant and Control Design of Interconnected Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061703
.
14.
Liu
,
T.
,
Azarm
,
S.
, and
Chopra
,
N.
,
2020
, “
Decentralized Multisubsystem Co-Design Optimization Using Direct Collocation and Decomposition-Based Methods
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091704
.
15.
Nakka
,
S. K. S.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
Simultaneous Combined Optimal Design and Control Formulation for Aircraft Hybrid-Electric Propulsion Systems
,”
J. Aircraft
,
58
(
1
), pp.
53
62
.
16.
Fahdzyana
,
C.
,
Van Raemdonck
,
S.
,
Vergote
,
K.
, and
Hofman
,
T.
,
2020
, “
Joined Plant and Control Design for Continuous Variable Transmission Systems
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1–3
,
IEEE
,
Piscataway, NJ
, pp.
3017
3022
.
17.
Alyaqout
,
S. F.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2007
, “
Coupling in Design and Robust Control Optimization
,”
2007 European Control Conference (ECC), Kos
,
July 2–5
,
IEEE
,
Piscataway, NJ
, pp.
1414
1421
.
18.
Alyaqout
,
S. F.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2012
, “
Combined Design and Robust Control of a Vehicle Passive/Active Suspension
,”
Int. J. Veh. Des.
,
59
(
4
), pp.
315
330
.
19.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
Robust MDSDO for Co-Design of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011403
.
20.
Azad
,
S.
,
2020
, “
Combined Design and Control Optimization of Stochastic Dynamic Systems
,” PhD thesis,
University of Cincinnati
,
Cincinnati, OH
.
21.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
22.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Single-Loop Reliability-Based MDSDO Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021703
.
23.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
Reliability-Based Co-Design of State-Constrained Stochastic Dynamical Systems
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
1
14
.
24.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
25.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
26.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
27.
Cramer
,
E. J.
,
Dennis
,
J. E.
, Jr.,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
28.
Haldar
,
A.
, and
Mahadevan
,
S.
,
1999
,
Probability, Reliability and Statistical Methods in Engineering Design
,
John Wiley & Sons
,
Hoboken, NJ
.
29.
Lee
,
S. H.
, and
Chen
,
W.
,
2009
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box-Type Problems
,”
Struct. Multidiscipl. Optim.
,
37
, pp.
239
253
.
30.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
31.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
32.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
1992
2019
.
33.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Soviet Math. Doklady
,
4
, pp.
240
243
.
34.
Xiu
,
D.
,
2009
, “
Fast Numerical Methods for Stochastic Computations: A Review
,”
Commun. Comput. Phys.
,
5
(
2–4
), pp.
242
272
.
35.
Wu
,
Y. T.
, and
Wang
,
W.
,
1998
, “
Efficient Probabilistic Design by Converting Reliability Constraints to Approximately Equivalent Deterministic Constraints
,”
J. Integr. Des. Process Sci.
,
2
(
4
), pp.
13
21
.
36.
Han
,
J.
,
2008
, “
Sequential Linear Programming Coordination Strategy for Deterministic and Probabilistic Analytical Target Cascading
,” PhD thesis,
University of Michigan
,
Ann Arbor, MI
.
37.
Cottrill
,
G. C.
,
2012
, “
Hybrid Solution of Stochastic Optimal Control Problems Using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms
,” PhD thesis,
Air Force Institute of Technology
,
Wright-Patterson Air Force Base, OH
.
38.
Xiu
,
D.
, and
Hesthaven
,
J. S.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.
39.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Commun. Comput. Phys.
,
2
(
2
), pp.
293
309
.
40.
Karhunen
,
K.
,
1946
, “
Uber Lineare Methoden in der Wahrscheinlichkeitsrechnung
,”
Ann. Acad. Sci. Fenn. Ser. AI: Math. Phys.
,
37
, pp.
3
79
.
41.
Loéve
,
M.
,
1946
, “
Fonctions Aléatoires de Second Ordre
,”
Revue Sci.
,
84
(
4
), pp.
195
206
.
42.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
43.
Becerra
,
V. M.
,
2004
, “
Solving Optimal Control Problems With State Constraints Using Nonlinear Programming and Simulation Tools
,”
IEEE Trans. Educ.
,
47
(
3
), pp.
377
384
.
44.
Geert Van Damme
,
2010
, “
Legendre Laguerre and Hermite – Gauss Quadrature
,”
MATLAB Central File Exchange
, https://www.mathworks.com/matlabcentral/fileexchange/26737-legendre-laguerre-and-hermite-gauss-quadrature, Accessed October 1, 2019.
45.
Avan Suinesiaputra
,
2010
, “
Hermite Polynomials
,” MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/27746-hermite-polynomials, Accessed January 10, 2020.
46.
Greg von Winckel
,
2004
, “
Legendre-Gauss Quadrature Weights and Nodes
,” MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadrature-weights-and-nodes, Accessed October 3, 2021.
47.
David Terr
,
2004
, “
LegendrePoly
,” MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/4890-legendrepoly, Accessed October 3, 2021.
You do not currently have access to this content.