Abstract

In this work, a hybrid topology optimization scheme based on the moving morphable component (MMC) method is presented for the design of stiffened membrane structure. The stiffened membrane structure is composed of a base membrane, reinforcing stiffeners, and functional cells. For an accurate and effective simulation of the structure, a hybrid structure model with multiple element types is constructed. In this study, MMC components used as the basic elements for the topology description will include several different types: bar elements for the stiffeners and continuum elements for the base membrane and functional cells. The base membrane is modeled using bi-modulus material. With this approach, the distribution of element types in different parts can be changed as the components are moved around during the optimization process. Some numerical examples are presented to validate the effectiveness of the proposed scheme.

References

1.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
2.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
3.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
4.
Huang
,
X.
, and
Xie
,
Y. M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
John Wiley & Sons
,
West Sussex, UK
.
5.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1994
, “
Optimal Design of Multiple Load Case Structures Using an Evolutionary Procedure
,”
Eng. Comput.
,
11
(
4
), pp.
295
302
.
6.
Kang
,
P.
, and
Youn
,
S. K.
,
2016
, “
Isogeometric Topology Optimization of Shell Structures Using Trimmed NURBS Surfaces
,”
Finite Elem. Anal. Des.
,
120
, pp.
18
40
.
7.
Okuizumi
,
N.
,
Satou
,
Y.
,
Mori
,
O.
,
Sakamoto
,
H.
, and
Furuya
,
H.
,
2021
, “
Analytical Investigation of Global Deployed Shape of a Spinning Solar Sail Membrane
,”
AIAA J.
,
59
(
3
), pp.
1075
1086
.
8.
Sakamoto
,
H.
,
Park
,
K. C.
, and
Miyazaki
,
Y.
,
2006
, “
Distributed and Localized Active Vibration Isolation in Membrane Structures
,”
J. Spacecr. Rockets
,
43
(
5
), pp.
1107
1116
.
9.
Wei
,
P.
,
Ma
,
H.
, and
Wang
,
M. Y.
,
2014
, “
The Stiffness Spreading Method for Layout Optimization of Truss Structures
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
667
682
.
10.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2013
, “
Truss Layout Optimization Within a Continuum
,”
Struct. Multidiscip. Optim.
,
48
(
1
), pp.
1
16
.
11.
Li
,
B.
,
Hong
,
J.
, and
Ge
,
L.
,
2017
, “
Constructal Design of Internal Cooling Geometries in Heat Conduction System Using the Optimality of Natural Branching Structures
,”
Int. J. Therm. Sci.
,
115
, pp.
16
28
.
12.
Gaynor
,
A. T.
,
Guest
,
J. K.
, and
Moen
,
C. D.
,
2013
, “
Reinforced Concrete Force Visualization and Design Using Bilinear Truss-Continuum Topology Optimization
,”
J. Struct. Eng.
,
139
(
4
), pp.
607
618
.
13.
Li
,
B.
,
Liu
,
H.
,
Yang
,
Z.
, and
Zhang
,
J.
,
2019
, “
Stiffness Design of Plate/Shell Structures by Evolutionary Topology Optimization
,”
Thin-Walled Struct.
,
141
, pp.
232
250
.
14.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2014
, “
GRAND—Ground Structure Based Topology Optimization for Arbitrary 2D Domains Using MATLAB
,”
Struct. Multidiscip. Optim.
,
50
(
5
), pp.
861
882
.
15.
Zhou
,
K.
, and
Li
,
X.
,
2008
, “
Topology Optimization for Minimum Compliance Under Multiple Loads Based on Continuous Distribution of Members
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
49
56
.
16.
Amir
,
O.
, and
Sigmund
,
O.
,
2013
, “
Reinforcement Layout Design for Concrete Structures Based on Continuum Damage and Truss Topology Optimization
,”
Struct. Multidiscip. Optim.
,
47
(
2
), pp.
157
174
.
17.
Li
,
Y.
,
Wei
,
P.
, and
Ma
,
H.
,
2017
, “
Integrated Optimization of Heat-Transfer Systems Consisting of Discrete Thermal Conductors and Solid Material
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1059
1069
.
18.
Cao
,
M.
,
Ma
,
H.
, and
Wei
,
P.
,
2018
, “
A Modified Stiffness Spreading Method for Layout Optimization of Truss Structures
,”
Acta Mech. Sinica
,
24
(
6
), pp.
1072
1083
.
19.
Jewett
,
J. L.
, and
Carstensen
,
J. V.
,
2019
, “
Experimental Investigation of Strut-and-Tie Layouts in Deep RC Beams Designed With Hybrid Bi-Linear Topology Optimization
,”
Eng. Struct.
,
197
, p.
109322
.
20.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
21.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
22.
Zhang
,
W.
,
Jiang
,
S.
,
Liu
,
C.
,
Li
,
D.
,
Kang
,
P.
,
Youn
,
S. K.
, and
Guo
,
X.
,
2020
, “
Stress-Related Topology Optimization of Shell Structures Using IGA/TSA-Based Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113036
.
23.
Hoang
,
V. N.
, and
Jang
,
G. W.
,
2017
, “
Topology Optimization Using Moving Morphable Bars for Versatile Thickness Control
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
153
173
.
24.
Sun
,
J.
,
Tian
,
Q.
,
Hu
,
H.
, and
Pedersen
,
N. L.
,
2018
, “
Topology Optimization of a Flexible Multibody System With Variable-Length Bodies Described by ALE–ANCF
,”
Nonlinear Dyn.
,
93
(
2
), pp.
413
441
.
25.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
26.
Zhang
,
S.
, and
Norato
,
J. A.
,
2017
, “
Optimal Design of Panel Reinforcements With Ribs Made of Plates
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081403
.
27.
Wein
,
F.
,
Dunning
,
P. D.
, and
Norato
,
J. A.
,
2020
, “
A Review on Feature-Mapping Methods for Structural Optimization
,”
Struct. Multidiscip. Optim.
,
62
(
4
), pp.
1597
1638
.
28.
Du
,
Z.
, and
Guo
,
X.
,
2014
, “
Variational Principles and the Related Bounding Theorems for Bi-Modulus Materials
,”
J. Mech. Phys. Solids
,
73
, pp.
183
211
.
29.
Zhang
,
W.
,
Song
,
J.
,
Zhou
,
J.
,
Du
,
Z.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2018
, “
Topology Optimization With Multiple Materials via Moving Morphable Component (MMC) Method
,”
Int. J. Numer. Methods Eng.
,
113
(
11
), pp.
1653
1675
.
30.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
31.
Li
,
Z.
,
Shi
,
T.
, and
Xia
,
Q.
,
2017
, “
Eliminate Localized Eigenmodes in Level Set Based Topology Optimization for the Maximization of the First Eigenfrequency of Vibration
,”
Adv. Eng. Softw.
,
107
, pp.
59
70
.
32.
Chu
,
S.
,
Townsend
,
S.
,
Featherston
,
C.
, and
Kim
,
H. A.
,
2020
, “
Simultaneous Layout and Topology Optimization of Curved Stiffened Panels
,”
AIAA J.
,
59
(
7
), pp.
2768
2783
.
33.
Chu
,
S.
,
Townsend
,
S.
,
Featherston
,
C.
, and
Kim
,
H. A.
,
2021
, “
Simultaneous Size, Layout and Topology Optimization of Stiffened Panels Under Buckling Constraints
,”
AIAA Scitech 2021 Forum
,
Virtual Event
,
June 15–19, 2020
, pp.
1
18
.
34.
Chu
,
S.
,
Featherston
,
C.
, and
Kim
,
H. A.
,
2021
, “
Design of Stiffened Panels for Stress and Buckling via Topology Optimization
,”
Struct. Multidiscip. Optim.
,
64
(
5
), pp.
3123
3146
.
35.
Shen
,
L.
,
Ding
,
X.
,
Hu
,
T.
,
Zhang
,
H.
, and
Xu
,
S.
,
2021
, “
Simultaneous Optimization of Stiffener Layout of 3D Box Structure Together With Attached Tuned Mass Dampers Under Harmonic Excitations
,”
Struct. Multidiscip. Optim.
,
64
(
2
), pp.
721
737
.
36.
Savine
,
F.
,
Irisarri
,
F. X.
,
Julien
,
C.
,
Vincenti
,
A.
, and
Guerin
,
Y.
,
2021
, “
A Component-Based Method for the Optimization of Stiffener Layout on Large Cylindrical Rib-Stiffened Shell Structures
,”
Struct. Multidiscip. Optim.
,
64
(
4
), pp.
1843
1861
.
37.
Ma
,
X.
,
Wang
,
F.
,
Aage
,
N.
,
Tian
,
K.
,
Hao
,
P.
, and
Wang
,
B.
,
2021
, “
Generative Design of Stiffened Plates Based on Homogenization Method
,”
Struct. Multidiscip. Optim.
,
64
(
6
), pp.
3951
3969
.
You do not currently have access to this content.