Abstract

Design and optimization of hull shapes for optimal hydrodynamic performance have been a major challenge for naval architectures. Deep learning bears the promise of comprehensive geometric representation and new design synthesis. In this work, we develop a deep neural network (DNN)-based approach to encode the hull designs to condensed representations, synthesize novel designs, and optimize the synthetic design based on the hydrodynamic performance. A variational autoencoder (VAE) with the hydro-predictor is developed to learn the representation through reconstructing the Laplacian parameterized hulls and encode the geometry-drag function simulated through computational fluid dynamics (CFD). Two data augmentation techniques, Perlin noise mapping and free-form deformation (FFD), are implemented to create the training set from a parent hull. The trained VAE is leveraged to efficiently optimize from massive synthetic hull vessels toward the optimal predicted drag performance. The selected geometries are further investigated and virtually screened under CFD simulations. Experiments show that our convolutional neural network (CNN) model accurately reconstructs the input vessels and predicts the corresponding drag coefficients. The proposed framework is demonstrated to synthesize realistic hull designs and optimize toward new hull designs with the drag coefficient decreased by 35% comparing to the parent design.

References

1.
Brooks
,
M. R.
, and
Faust
,
P.
,
2018
, “
50 Years of Review of Maritime Transport, 1968–2018: Reflecting on the Past, Exploring the Future
,”
UNCTAD
,
Geneva, Switzerland
.
2.
Pérez
,
F.
, and
Clemente
,
J.
,
2011
, “
Constrained Design of Simple Ship Hulls With B-Spline Surfaces
,”
Comput. Aided Des.
,
43
(
12
), pp.
1829
1840
.
3.
Ferziger
,
J. H.
,
Perić
,
M.
, and
Street
,
R. L.
,
2002
,
Computational Methods for Fluid Dynamics
, Vol.
3
,
Springer
,
Berlin, Germany
.
4.
Diez
,
M.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2018
, “
Stochastic Optimization Methods for Ship Resistance and Operational Efficiency Via CFD
,”
Struct. Multidiscipl. Optim.
,
57
(
2
), pp.
735
758
.
5.
Souto-Iglesias
,
A.
,
Zamora-Rodríguez
,
R.
,
Fernández-Gutiérrez
,
D.
, and
Pérez-Rojas
,
L.
,
2007
, “
Analysis of the Wave System of a Catamaran for CFD Validation
,”
Experiments Fluids
,
42
(
2
), pp.
321
332
.
6.
Kim
,
Y.
, and
Hermansky
,
G.
,
2014
, “
Uncertainties in Seakeeping Analysis and Related Loads and Response Procedures
,”
Ocean. Eng.
,
86
, pp.
68
81
.
7.
Yu
,
D.
,
Lecointre
,
P.
, and
Yeung
,
R. W.
,
2017
, “
Experimentally-Based Investigation of Effects of Wave Interference on the Wave Resistance of Asymmetric Di-Hulls
,”
Appl. Ocean. Res.
,
65
, pp.
142
153
.
8.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), p.
436
.
9.
Ororbia
,
M. E.
, and
Warn
,
G. P.
,
2021
, “
Design Synthesis Through a Markov Decision Process and Reinforcement Learning Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021002
.
10.
Kochkov
,
D.
,
Smith
,
J. A.
,
Alieva
,
A.
,
Wang
,
Q.
,
Brenner
,
M. P.
, and
Hoyer
,
S.
,
2021
, “
Machine Learning–Accelerated Computational Fluid Dynamics
,”
Proc. Natl. Acad. Sci. USA
,
118
(
21
), p.
e2101784118
.
11.
Yang
,
Y.
,
Tu
,
H.
,
Song
,
L.
,
Chen
,
L.
,
Xie
,
D.
, and
Sun
,
J.
,
2021
, “
Research on Accurate Prediction of the Container Ship Resistance by Rbfnn and Other Machine Learning Algorithms
,”
J. Marine Sci. Eng.
,
9
(
4
), p.
376
.
12.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,”
International Conference on Learning Representations
,
Banff, Canada
.
13.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Adv. Neural Inform. Process. Syst.
,
27
.
14.
Karras
,
T.
,
Laine
,
S.
, and
Aila
,
T.
,
2018
, “
A style-based generator architecture for generative adversarial networks
,”
Proc. IEEE Int. Conf. Comput. Vis.
,
Seoul, South Korea
.
15.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M. D.
,
2020
, “
Airfoil Design Parameterization and Optimization Using Bézier Generative Adversarial Networks
,”
AIAA. J.
,
58
(
11
), pp.
4723
4735
.
16.
Achour
,
G.
,
Sung
,
W. J.
,
Pinon-Fischer
,
O. J.
, and
Mavris
,
D. N.
,
2020
, “
Development of a Conditional Generative Adversarial Network for Airfoil Shape Optimization
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
2261
.
17.
Radhakrishnan
,
S.
,
Bharadwaj
,
V.
,
Manjunath
,
V.
, and
Srinath
,
R.
,
2018
, “
Creative Intelligence–Automating Car Design Studio With Generative Adversarial Networks (GAN)
,”
International Cross-Domain Conference for Machine Learning and Knowledge Extraction
,
Hamburg, Germany
,
Aug. 27–30
, Springer, pp.
160
175
.
18.
Wang
,
J.
, and
He
,
Y.
,
2019
, “
Physics-Aware 3d Mesh Synthesis
,”
International Conference on 3D Vision
,
Québec, Canada
,
Sept. 16–19
, IEEE, pp.
502
512
.
19.
Roy
,
K.
,
Mert
,
H. T.
, and
Swaminathan
,
M.
,
2018
, “
Preliminary Application of Deep Learning to Design Space Exploration
,”
IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)
,
Chandigarh, India
,
Dec. 16–18
, IEEE, pp.
1
3
.
20.
Korvin-Kroukovsky
,
B. V.
, and
Jacobs
,
W. R.
,
1957
, “
Pitching and Heaving Motions of a Ship in Regular Waves
,” Stevens Inst. of Tech. Experimental Towing TANK, Technical Report, Hoboken, NJ.
21.
Yeung
,
R. W.
,
1982
, “
Numerical Methods in Free-Surface Flows
,”
Annu. Rev. Fluid. Mech.
,
14
(
1
), pp.
395
442
.
22.
Wehausen
,
J. V.
,
1973
, “
The Wave Resistance of Ships
,”
Advances in Applied Mechanics
, Vol.
13
,
Elsevier
, pp.
93
245
.
23.
Yeung
,
R. W.
,
Poupard
,
G.
,
Toilliez
,
J. O.
,
SÖDING
,
H.
, and
Gotman
,
A. S.
,
2004
, “
Interference-Resistance Prediction and Its Applications to Optimal Multi-hull Configuration Design
,”
Transac. Soc. Naval Architects Marine Engineers
,
112
, pp.
142
168
.
24.
Yeung
,
R. W.
,
1978
, “
On the Interactions of Slender Ships in Shallow Water
,”
J. Fluid. Mech.
,
85
(
1
), pp.
143
159
.
25.
Inoue
,
S.
,
Hirano
,
M.
,
Kijima
,
K.
, and
Takashina
,
J.
,
1981
, “
A Practical Calculation Method of Ship Maneuvering Motion
,”
Int. Shipbuilding Progress
,
28
(
325
), pp.
207
222
.
26.
Bertram
,
V.
,
2012
,
Practical Ship Hydrodynamics
,
Elsevier
,
Amsterdam, Netherlands
.
27.
Lin
,
C.-W.
,
Percival
,
S.
, and
Gotimer
,
E. H.
,
1995
, “
Viscous Drag Calculations for Ship Hull Geometry
,” Naval Surface Warfare Center, Carderock Div, Ship Hydromechanics Department, Bethesda, MD, Technical Report, Potomac, MD.
28.
Percival
,
S.
,
Hendrix
,
D.
, and
Noblesse
,
F.
,
2001
, “
Hydrodynamic Optimization of Ship Hull Forms
,”
Appl. Ocean. Res.
,
23
(
6
), pp.
337
355
.
29.
Chanson
,
H.
,
2009
,
Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows
,
CRC Press
,
Boca Raton, FL
.
30.
Newman
,
J. N.
,
2018
,
Marine Hydrodynamics
,
The MIT Press
,
Cambridge, MA
.
31.
Jiao
,
J.
,
Chen
,
C.
, and
Ren
,
H.
,
2019
, “
A Comprehensive Study on Ship Motion and Load Responses in Short-Crested Irregular Waves
,”
Int. J. Naval Architec. Ocean Eng.
,
11
(
1
), pp.
364
379
.
32.
Peri
,
D.
,
Rossetti
,
M.
, and
Campana
,
E. F.
,
2001
, “
Design Optimization of Ship Hulls Via Cfd Techniques
,”
J. Ship Res.
,
45
(
2
), pp.
140
149
.
33.
Fairlie-Clarke
,
A.
,
1975
, “
Regression Analysis of Ship Data
,”
Int. Shipbuild. Prog.
,
22
(
251
), pp.
227
250
.
34.
Holtrop
,
J.
, and
Mennen
,
G.
,
1982
, “
An Approximate Power Prediction Method
,”
Int. Shipbuilding Progress
,
29
(
335
), pp.
166
170
.
35.
Watson
,
D. G.
,
2002
,
Practical Ship Design
, Vol.
1
,
Elsevier
,
Amsterdam, Netherlands
.
36.
Tran
,
A.
,
Sun
,
J.
,
Furlan
,
J. M.
,
Pagalthivarthi
,
K. V.
,
Visintainer
,
R. J.
, and
Wang
,
Y.
,
2019
, “
pbo-2gp-3b: A Batch Parallel Known/Unknown Constrained Bayesian Optimization With Feasibility Classification and Its Applications in Computational Fluid Dynamics
,”
Comput. Methods. Appl. Mech. Eng.
,
347
, pp.
827
852
.
37.
Jordan
,
M. I.
, and
Mitchell
,
T. M.
,
2015
, “
Machine Learning: Trends, Perspectives, and Prospects
,”
Science
,
349
(
6245
), pp.
255
260
.
38.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 11–18
, pp.
1
9
.
39.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 11–18
, pp.
1026
1034
.
40.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2015
, “
Faster R-cnn: Towards Real-Time Object Detection With Region Proposal Networks
,”
Conference on Neural Information Processing Systems
,
Montréal, Canada
,
Dec. 7–10
, pp.
91
99
.
41.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
779
788
.
42.
Li
,
Y.
,
Qi
,
H.
,
Dai
,
J.
,
Ji
,
X.
, and
Wei
,
Y.
,
2017
, “
Fully Convolutional Instance-Aware Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
2359
2367
.
43.
He
,
K.
,
Gkioxari
,
G.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2017
, “
Mask R-CNN
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
2961
2969
.
44.
Panchal
,
J. H.
,
Fuge
,
M.
,
Liu
,
Y.
,
Missoum
,
S.
, and
Tucker
,
C.
,
2019
, “
Machine Learning for Engineering Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
110301
.
45.
Wang
,
C.
,
Tan
,
X.
,
Tor
,
S.
, and
Lim
,
C.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.
46.
Yao
,
X.
,
Moon
,
S. K.
, and
Bi
,
G.
,
2017
, “
A Hybrid Machine Learning Approach for Additive Manufacturing Design Feature Recommendation
,”
Rapid Prototyping J.
,
23
(
6
), pp.
983
997
.
47.
Kollmann
,
H. T.
,
Abueidda
,
D. W.
,
Koric
,
S.
,
Guleryuz
,
E.
, and
Sobh
,
N. A.
,
2020
, “
Deep Learning for Topology Optimization of 2d Metamaterials
,”
Mater. Des.
,
196
, p.
109098
.
48.
Yilmaz
,
E.
, and
German
,
B.
,
2020
, “
Conditional Generative Adversarial Network Framework for Airfoil Inverse Design
,”
AIAA Aviation 2020 Forum
,
Virtual
,
June 15–19
, p.
3185
.
49.
Wang
,
Y.
,
Shimada
,
K.
, and
Farimani
,
A. B.
,
2021
, “
Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic-Aware Shape Optimization
,”
arXiv:2101.04757
. https://arxiv.org/abs/2101.04757
50.
Tsai
,
C.-P.
,
Lin
,
C.
, and
Shen
,
J.-N.
,
2002
, “
Neural Network for Wave Forecasting Among Multi-Stations
,”
Ocean. Eng.
,
29
(
13
), pp.
1683
1695
.
51.
Jain
,
P.
, and
Deo
,
M.
,
2006
, “
Neural Networks in Ocean Engineering
,”
Ships Offshore Struct.
,
1
(
1
), pp.
25
35
.
52.
Perera
,
L. P.
, and
Mo
,
B.
,
2016
, “
Marine Engine Operating Regions Under Principal Component Analysis to Evaluate Ship Performance and Navigation Behavior
,”
IFAC-PapersOnLine
,
49
(
23
), pp.
512
517
.
53.
Cui
,
H.
,
Turan
,
O.
, and
Sayer
,
P.
,
2012
, “
Learning-Based Ship Design Optimization Approach
,”
Comput. Aided Des.
,
44
(
3
), pp.
186
195
.
54.
Yu
,
D.
, and
Wang
,
L.
,
2018
, “
Hull Form Optimization with Principal Component Analysis and Deep Neural Network
,”
arXiv:1810.11701
. https://arxiv.org/abs/1810.11701
55.
Kobbelt
,
L. P.
,
Vorsatz
,
J.
,
Labsik
,
U.
, and
Seidel
,
H.-P.
,
1999
, “
A Shrink Wrapping Approach to Remeshing Polygonal Surfaces
,”
Computer Graphics Forum
,
Lake Tahoe, CA
,
May 2–5
, pp.
119
130
.
56.
Au
,
O. K.-C.
,
Fu
,
H.
,
Tai
,
C.-L.
, and
Cohen-Or
,
D.
,
2007
, “
Handle-Aware Isolines for Scalable Shape Editing
,”
ACM SIGGRAPH
,
San Diego, CA
,
Aug. 5–9
.
57.
Pagani
,
L.
, and
Scott
,
P. J.
,
2018
, “
Curvature Based Sampling of Curves and Surfaces
,”
Computer Aid. Geom. Des.
,
59
, pp.
32
48
.
58.
Coons
,
S. A.
,
1967
, “
Surfaces for Computer-Aided Design of Space Forms
,” Massachusetts Institution of Technology Cambridge Project MAC, Technical Report, Cambridge, MA.
59.
Bartels
,
R. H.
,
Beatty
,
J. C.
, and
Barsky
,
B. A.
,
1995
,
An Introduction to Splines for Use in Computer Graphics and Geometric Modeling
,
Morgan Kaufmann
,
Burlington, MA
.
60.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-form Deformation of Solid Geometric Models
,”
13th Annual Conference on Computer Graphics and Interactive Techniques
,
Dallas, TX
,
Aug. 18–22
, p.
151
.
61.
Perlin
,
K.
,
1985
, “
An Image Synthesizer
,”
ACM Siggraph Computer Graphics
,
19
(
3
), pp.
287
296
.
64.
McNicholas
,
M.
,
2016
,
Maritime Security: An Introduction
,
Butterworth-Heinemann
,
Oxford, UK
.
65.
Yamakawa
,
S.
, and
Shimada
,
K.
,
2003
, “
Anisotropic Tetrahedral Meshing Via Bubble Packing and Advancing Front
,”
Int. J. Numer. Methods Eng.
,
57
(
13
), pp.
1923
1942
.
66.
Poon
,
P. W.
, and
Carter
,
J. N.
,
1995
, “
Genetic Algorithm Crossover Operators for Ordering Applications
,”
Comput. Oper. Res.
,
22
(
1
), pp.
135
147
.
67.
Clevert
,
D.-A.
,
Unterthiner
,
T.
, and
Hochreiter
,
S.
,
2016
, “
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
,”
International Conference on Learning Representations
,
San Juan, PR
.
68.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
,
San Diego, CA
.
You do not currently have access to this content.