Abstract

Even though many efforts have been devoted to effective strategies to build accurate surrogate models, surrogate model uncertainty is inevitable due to a limited number of available simulation samples. Therefore, the surrogate model uncertainty, one of the epistemic uncertainties in reliability-based design optimization (RBDO), has to be considered during the design process to prevent unexpected failure of a system that stems from an inaccurate surrogate model. However, there have been limited attempts to obtain a reliable optimum taking into account the surrogate model uncertainty due to its complexity and computational burden. Thus, this paper proposes a confidence-based design optimization (CBDO) under surrogate model uncertainty to find a conservative optimum despite an insufficient number of simulation samples. To compensate the surrogate model uncertainty in reliability analysis, the confidence of reliability is brought to describe the uncertainty of reliability. The proposed method employs the Gaussian process modeling to explicitly quantify the uncertainty of a surrogate model. Thus, metamodel-based importance sampling and expansion optimal linear estimation are exploited to reduce the computational burden on confidence estimation. In addition, stochastic sensitivity analysis of the confidence is developed for CBDO, which is formulated to find a conservative optimum than an RBDO optimum at a specific confidence level. Numerical examples using mathematical functions and finite element analysis show that the proposed confidence analysis and CBDO can prevent overestimation of reliability caused by an inaccurate surrogate model.

References

1.
Hu
,
W.
,
Choi
,
K. K.
, and
Cho
,
H.
,
2016
, “
Reliability-Based Design Optimization of Wind Turbine Blades for Fatigue Life Under Dynamic Wind Load Uncertainty
,”
Struct. Multidiscip. Optim.
,
54
(
4
), pp.
953
970
. 10.1007/s00158-016-1462-x
2.
Clark
,
C. E.
, and
DuPont
,
B.
,
2018
, “
Reliability-Based Design Optimization in Offshore Renewable Energy Systems
,”
Renewable Sustainable Energy Rev.
,
97
, pp.
390
400
. 10.1016/j.rser.2018.08.030
3.
Fan
,
X.
,
Wang
,
P.
, and
Hao
,
F.
,
2019
, “
Reliability-Based Design Optimization of Crane Bridges Using Kriging-Based Surrogate Models
,”
Struct. Multidiscip. Optim.
,
59
(
3
), pp.
993
1005
. 10.1007/s00158-018-2183-0
4.
Duan
,
Z.
,
Jung
,
Y.
,
Yan
,
J.
, and
Lee
,
I.
,
2020
, “
Reliability-Based Multi-Scale Design Optimization of Composite Frames Considering Structural Compliance and Manufacturing Constraints
,”
Struct. Multidiscip. Optim.
,
61
(
6
), pp.
2401
2421
. 10.1007/s00158-020-02517-3
5.
Jiang
,
Z.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
502
516
. 10.4271/2013-01-1384
6.
Nannapaneni
,
S.
, and
Mahadevan
,
S.
,
2016a
, “
Reliability Analysis Under Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
155
, pp.
9
20
. 10.1016/j.ress.2016.06.005
7.
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N. J.
,
Lee
,
I.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2016
, “
Conservative Reliability-Based Design Optimization Method With Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1609
1630
. 10.1007/s00158-016-1492-4
8.
Jung
,
Y.
,
Cho
,
H.
, and
Lee
,
I.
,
2019
, “
Reliability Measure Approach for Confidence-Based Design Optimization Under Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
60
(
5
), pp.
1967
1982
. 10.1007/s00158-019-02299-3
9.
Jung
,
Y.
,
Cho
,
H.
,
Duan
,
Z.
, and
Lee
,
I.
,
2020
, “
Determination of Sample Size for Input Variables in RBDO Through Bi-Objective Confidence-Based Design Optimization Under Input Model Uncertainty
,”
Struct. Multidiscip. Optim.
,
61
(
1
), pp.
253
266
. 10.1007/s00158-019-02357-w
10.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
. 10.1115/1.4041946
11.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Statistical Methodology)
,
63
(
3
), pp.
425
464
. 10.1111/1467-9868.00294
12.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
. 10.1016/j.cma.2011.03.016
13.
Lee
,
G.
,
Kim
,
W.
,
Oh
,
H.
,
Youn
,
B. D.
, and
Kim
,
N. H.
,
2019
, “
Review of Statistical Model Calibration and Validation—From the Perspective of Uncertainty Structures
,”
Struct. Multidiscip. Optim.
,
60
(
4
), pp.
1619
1644
. 10.1007/s00158-019-02270-2
14.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2011
, “
Likelihood-Based Representation of Epistemic Uncertainty due to Sparse Point Data and/or Interval Data
,”
Reliab. Eng. Syst. Saf.
,
96
(
7
), pp.
814
824
. 10.1016/j.ress.2011.02.003
15.
Moon
,
M. Y.
,
Choi
,
K. K.
,
Gaul
,
N.
, and
Lamb
,
D.
,
2019
, “
Treating Epistemic Uncertainty Using Bootstrapping Selection of Input Distribution Model for Confidence-Based Reliability Assessment
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031402
. 10.1115/1.4042149
16.
Ito
,
M.
,
Kim
,
N. H.
, and
Kogiso
,
N.
,
2018
, “
Conservative Reliability Index for Epistemic Uncertainty in Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1919
1935
. 10.1007/s00158-018-1903-9
17.
Wang
,
Y.
,
Hao
,
P.
,
Yang
,
H.
,
Wang
,
B.
, and
Gao
,
Q.
,
2020
, “
A Confidence-Based Reliability Optimization With Single Loop Strategy and Second-Order Reliability Method
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113436
. 10.1016/j.cma.2020.113436
18.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
. 10.2514/1.34321
19.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Roustant
,
O.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2010
, “
Adaptive Designs of Experiments for Accurate Approximation of a Target Region
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071008
. 10.1115/1.4001873
20.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
. 10.1016/j.strusafe.2011.01.002
21.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
49
(
3
), pp.
401
416
. 10.1007/s00158-013-0988-4
22.
Sun
,
Z.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
152
165
. 10.1016/j.ress.2016.09.003
23.
Zhang
,
Y.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2020
, “
General-Surrogate Adaptive Sampling Using Interquartile Range for Design Space Exploration
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051402
. 10.1115/1.4044432
24.
Picheny
,
V.
,
Kim
,
N. H.
,
Haftka
,
R.
, and
Queipo
,
N.
,
2008
, “
Conservative Predictions Using Surrogate Modeling
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference; 9th AIAA Gossamer Spacecraft Forum; 4th AIAA Multidisciplinary Design Optimization Specialists Conference
,
Schaumburg, IL
.
25.
Viana
,
F. A.
,
Picheny
,
V.
, and
Haftka
,
R. T.
,
2010
, “
Using Cross Validation to Design Conservative Surrogates
,”
AIAA J.
,
48
(
10
), pp.
2286
2298
. 10.2514/1.J050327
26.
Sjöstedt-de Luna
,
S.
, and
Young
,
A.
,
2003
, “
The Bootstrap and Kriging Prediction Intervals
,”
Scand. J. Stat.
,
30
(
1
), pp.
175
192
. 10.1111/1467-9469.00325
27.
Zhao
,
L.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Gorsich
,
D.
,
2013
, “
Conservative Surrogate Model Using Weighted Kriging Variance for Sampling-Based RBDO
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091003
. 10.1115/1.4024731
28.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Surrogate Model Uncertainty Quantification for Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
192
, p.
106432
. 10.1016/j.ress.2019.03.039
29.
Nannapaneni
,
S.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016b
, “
Uncertainty Quantification in Reliability Estimation with Limit State Surrogates
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1509
1526
. 10.1007/s00158-016-1487-1
30.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
. 10.1115/1.4034219
31.
Jian
,
W.
,
Zhili
,
S.
,
Qiang
,
Y.
, and
Rui
,
L.
,
2017
, “
Two Accuracy Measures of the Kriging Model for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
167
, pp.
494
505
. 10.1016/j.ress.2017.06.028
32.
Bae
,
S.
,
Park
,
C.
, and
Kim
,
N. H.
,
2020
, “
Estimating Effect of Additional Sample on Uncertainty Reduction in Reliability Analysis Using Gaussian Process
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111706
. 10.1115/1.4047002
33.
Robert
,
C.
, and
Casella
,
G.
,
2013
,
Monte Carlo Statistical Methods
,
Springer Science & Business Media
.
34.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
. 10.1016/j.probengmech.2013.02.002
35.
Li
,
C. C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
. 10.1061/(ASCE)0733-9399(1993)119:6(1136)
36.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2002
, “
Comparison of Finite Element Reliability Methods
,”
Probab. Eng. Mech.
,
17
(
4
), pp.
337
348
. 10.1016/S0266-8920(02)00031-0
37.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J. M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
. 10.1007/s00158-011-0653-8
38.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
. 10.2514/1.J051017
39.
Kang
,
K.
,
Qin
,
C.
,
Lee
,
B.
, and
Lee
,
I.
,
2019
, “
Modified Screening-Based Kriging Method with Cross Validation and Application to Engineering Design
,”
Appl. Math. Model.
,
70
, pp.
626
642
. 10.1016/j.apm.2019.01.030
40.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
, Vol.
10
.
John Wiley & Sons
.
41.
Sobol
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
Comput. Math. Math. Phys.
,
7
(
4
), pp.
86
112
. 10.1016/0041-5553(67)90144-9
42.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
. 10.1016/S0266-8920(01)00019-4
43.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
, “Gaussian Processes for Machine Learning,”
Adaptive Computation and Machine Learning
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
44.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
. 10.1115/1.2429697
45.
Lee
,
I.
,
Choi
,
K. K.
,
Noh
,
Y.
,
Zhao
,
L.
, and
Gorsich
,
D.
,
2011
, “
Sampling-based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems with Correlated Random Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021003
. 10.1115/1.4003186
46.
Cho
,
H.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Lamb
,
D.
,
2016
, “
Design Sensitivity Method for Sampling-Based RBDO With Varying Standard Deviation
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011405
. 10.1115/1.4031829
47.
Jung
,
Y.
,
Lee
,
J.
,
Lee
,
M.
,
Kang
,
N.
, and
Lee
,
I.
,
2020
, “
Probabilistic Analytical Target Cascading Using Kernel Density Estimation for Accurate Uncertainty Propagation
,”
Struct. Multidiscip. Optim.
,
61
, pp.
2077
2095
. https://doi.org/10.1007/s00158-019-02455-9
48.
Moon
,
M. Y.
,
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2018
, “
Confidence-Based Reliability Assessment Considering Limited Numbers of Both Input and Output Test Data
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
2027
2043
. 10.1007/s00158-018-1900-z
49.
Zhu
,
P.
,
Shi
,
L.
,
Yang
,
R. J.
, and
Lin
,
S. P.
,
2015
, “
A New Sampling-Based RBDO Method Via Score Function With Reweighting Scheme and Application to Vehicle Designs
,”
Appl. Math. Model.
,
39
(
15
), pp.
4243
4256
. 10.1016/j.apm.2014.11.045
50.
Yoo
,
D.
, and
Lee
,
I.
,
2014
, “
Sampling-Based Approach for Design Optimization in the Presence of Interval Variables
,”
Struct. Multidiscip. Optim.
,
49
(
2
), pp.
253
266
. 10.1007/s00158-013-0969-7
51.
McLachlan
,
G. J.
, and
Basford
,
K. E.
,
1988
,
Mixture Models: Inference and Applications to Clustering
, Vol.
38
.
M. Dekker
,
New York
.
You do not currently have access to this content.