Abstract

The automation and intelligence highlighted in Industry 4.0 put forward higher requirements for reasonable trade-offs between humans and machines for decision-making governance. However, in the context of Industry 4.0, the vision of decision support for design engineering is still unclear. Additionally, the corresponding methods and system architectures are lacking to support the realization of value-chain-centric complex engineered systems design lifecycles. Hence, we identify decision support demands for complex engineered systems designs in the Industry 4.0 era, representing the integrated design problems at various stages of the product value chain. As a response, in this paper, the architecture of a Knowledge-Based Design Guidance System (KBDGS) for cloud-based decision support (CBDS) is presented that highlights the integrated management of complexity, uncertainty, and knowledge in designing decision workflows, as well as systematic design guidance to find satisfying solutions with the iterative process “formulation-refinement-exploration-improvement” (FREI). The KBDGS facilitates diverse multi-stakeholder collaborative decisions in end-to-end cloud services. Finally, two design case studies are conducted to illustrate the proposed work and the efficacy of the developed KBDGS. The contribution of this paper is to provide design guidance to facilitate knowledge discovery, capturing, and reuse in the context of decision-centric digital design, thus improving the efficiency and effectiveness of decision-making, as well as the evolution of decision support in the field of design engineering for the age of Industry 4.0 innovation paradigm.

References

1.
Esmaeilian
,
B.
,
Behdad
,
S.
, and
Wang
,
B.
,
2016
, “
The Evolution and Future of Manufacturing: A Review
,”
J. Manuf. Syst.
,
39
, pp.
79
100
. 10.1016/j.jmsy.2016.03.001
2.
Oztemel
,
E.
, and
Gursev
,
S.
,
2020
, “
Literature Review of Industry 4.0 and Related Technologies
,”
J. Intell. Manuf.
,
31
(
1
), pp.
127
182
. 10.1007/s10845-018-1433-8
3.
Zheng
,
P.
,
wang
,
H.
,
Sang
,
Z.
,
Zhong
,
R. Y.
,
Liu
,
Y.
,
Liu
,
C.
,
Mubarok
,
K.
,
Yu
,
S.
, and
Xu
,
X.
,
2018
, “
Smart Manufacturing Systems for Industry 4.0: Conceptual Framework, Scenarios, and Future Perspectives
,”
Front. Mech. Eng.
,
13
(
2
), pp.
137
150
. 10.1007/s11465-018-0499-5
4.
Kang
,
H. S.
,
Lee
,
J. Y.
,
Choi
,
S.
,
Kim
,
H.
,
Park
,
J. H.
,
Son
,
J. Y.
,
Kim
,
B. H.
, and
Noh
,
S. D.
,
2016
, “
Smart Manufacturing: Past Research, Present Findings, and Future Directions
,”
Int. J. Precision Eng. Manuf.-Green Technol.
,
3
(
1
), pp.
111
128
. 10.1007/s40684-016-0015-5
5.
Lim
,
K. Y. H.
,
Zheng
,
P.
, and
Chen
,
C.-H.
,
2020
, “
A State-of-the-Art Survey of Digital Twin: Techniques, Engineering Product Lifecycle Management and Business Innovation Perspectives
,”
J. Intell. Manuf.
,
31
(
6
), pp.
1313
1337
. 10.1007/s10845-019-01512-w
6.
Milisavljevic-Syed
,
J.
,
Thames
,
J. L.
, and
Schaefer
,
D.
,
2020
, “
The Digitization of Design and Manufacturing: A State-of-the-Art Report on the Transition From Strategic Vision to Implementation in Industry
,”
Procedia CIRP
,
93
, pp.
575
580
.
7.
Wang
,
K.
,
Jiang
,
Z.
,
Peng
,
B.
, and
Jing
,
H.
,
2020
, “
Servitization of Manufacturing in the New ICTs Era: A Survey on Operations Management
,”
Front. Eng. Manage
.
8.
Hoffmann Souza
,
M. L.
,
da Costa
,
C. A.
,
de Oliveira Ramos
,
G.
, and
da Rosa Righi
,
R.
,
2020
, “
A Survey on Decision-Making Based on System Reliability in the Context of Industry 4.0
,”
J. Manuf. Syst.
,
56
, pp.
133
156
. 10.1016/j.jmsy.2020.05.016
9.
Wiesner
,
S.
, and
Thoben
,
K.-D.
,
2017
, “Cyber-Physical Product-Service Systems,”
Multi-Disciplinary Engineering for Cyber-Physical Production Systems
,
Springer
,
New York
, pp.
63
88
.
10.
Zhong
,
R. Y.
,
Xu
,
X.
,
Klotz
,
E.
, and
Newman
,
S. T.
,
2017
, “
Intelligent Manufacturing in the Context of Industry 4.0: A Review
,”
Engineering
,
3
(
5
), pp.
616
630
. 10.1016/J.ENG.2017.05.015
11.
Li
,
Q.
,
Tang
,
Q.
,
Chan
,
I.
,
Wei
,
H.
,
Pu
,
Y.
,
Jiang
,
H.
,
Li
,
J.
, and
Zhou
,
J.
,
2018
, “
Smart Manufacturing Standardization: Architectures, Reference Models and Standards Framework
,”
Comput. Ind.
,
101
, pp.
91
106
. 10.1016/j.compind.2018.06.005
12.
Wang
,
R.
,
Nellippallil
,
A. B.
,
Wang
,
G.
,
Yan
,
Y.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2021
, “
A Process Knowledge Representation Approach for Decision Support in Design of Complex Engineered Systems
,”
Adv. Eng. Infor.
,
48
, p.
101257
.
13.
Wang
,
R.
,
Wang
,
G.
,
Yan
,
Y.
,
Sabeghi
,
M.
,
Ming
,
Z.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2019
, “
Ontology-Based Representation of Meta-Design in Designing Decision Workflows
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011003
. 10.1115/1.4041474
14.
Mourtzis
,
D.
,
Fotia
,
S.
,
Boli
,
N.
, and
Pittaro
,
P.
,
2018
, “
Product-Service System (PSS) Complexity Metrics Within Mass Customization and Industry 4.0 Environment
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1
), pp.
91
103
. 10.1007/s00170-018-1903-3
15.
Leitão
,
P.
,
Colombo
,
A. W.
, and
Karnouskos
,
S.
,
2016
, “
Industrial Automation Based on Cyber-Physical Systems Technologies: Prototype Implementations and Challenges
,”
Comput. Ind.
,
81
, pp.
11
25
. 10.1016/j.compind.2015.08.004
16.
Biffl
,
S.
,
Lüder
,
A.
, and
Gerhard
,
D.
,
2017
,
Multi-Disciplinary Engineering for Cyber-Physical Production Systems: Data Models and Software Solutions for Handling Complex Engineering Projects
,
Springer International Publishing
.
17.
Frazzon
,
E. M.
,
Agostino
,
ÍRS
,
Broda
,
E.
, and
Freitag
,
M.
,
2020
, “
Manufacturing Networks in the Era of Digital Production and Operations: A Socio-Cyber-Physical Perspective
,”
Ann. Rev. Control
,
49
, pp.
288
294
. 10.1016/j.arcontrol.2020.04.008
18.
Moghaddam
,
M.
,
Cadavid
,
M. N.
,
Kenley
,
C. R.
, and
Deshmukh
,
A. V.
,
2018
, “
Reference Architectures for Smart Manufacturing: A Critical Review
,”
J. Manuf. Syst.
,
49
, pp.
215
225
. 10.1016/j.jmsy.2018.10.006
19.
Park
,
K. T.
,
Lee
,
J.
,
Kim
,
H.-J.
, and
Noh
,
S. D.
,
2020
, “
Digital Twin-Based Cyber Physical Production System Architectural Framework for Personalized Production
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5
), pp.
1787
1810
. 10.1007/s00170-019-04653-7
20.
Ribeiro
,
L.
, and
Hochwallner
,
M.
,
2018
, “
On the Design Complexity of Cyberphysical Production Systems
,”
Complexity
, p.
4632195
.
21.
Francalanza
,
E.
,
Borg
,
J.
, and
Constantinescu
,
C.
,
2017
, “
A Knowledge-Based Tool for Designing Cyber Physical Production Systems
,”
Comput. Ind.
,
84
, pp.
39
58
. 10.1016/j.compind.2016.08.001
22.
Zeng
,
J.
,
Yang
,
L. T.
,
Lin
,
M.
,
Ning
,
H.
, and
Ma
,
J.
,
2020
, “
A Survey: Cyber-Physical-Social Systems and Their System-Level Design Methodology
,”
Future Generation Computer Systems
,
105
, pp.
1028
1042
. 10.1016/j.future.2016.06.034
23.
Dantan
,
J.-Y.
,
El Mouayni
,
I.
,
Sadeghi
,
L.
,
Siadat
,
A.
, and
Etienne
,
A.
,
2019
, “
Human Factors Integration in Manufacturing Systems Design Using Function–Behavior–Structure Framework and Behaviour Simulations
,”
CIRP Ann.
,
68
(
1
), pp.
125
128
. 10.1016/j.cirp.2019.04.040
24.
Sgarbossa
,
F.
,
Grosse
,
E. H.
,
Neumann
,
W. P.
,
Battini
,
D.
, and
Glock
,
C. H.
,
2020
, “
Human Factors in Production and Logistics Systems of the Future
,”
Ann. Rev. Control
,
49
, pp.
295
305
. 10.1016/j.arcontrol.2020.04.007
25.
Qu
,
M.
,
Yu
,
S.
,
Chen
,
D.
,
Chu
,
J.
, and
Tian
,
B.
,
2016
, “
State-of-the-Art of Design, Evaluation, and Operation Methodologies in Product Service Systems
,”
Comput. Ind.
,
77
, pp.
1
14
. 10.1016/j.compind.2015.12.004
26.
Vasantha
,
G. V. A.
,
Roy
,
R.
,
Lelah
,
A.
, and
Brissaud
,
D.
,
2012
, “
A Review of Product–Service Systems Design Methodologies
,”
J. Eng. Des.
,
23
(
9
), pp.
635
659
. 10.1080/09544828.2011.639712
27.
Bertoni
,
A.
,
Bertoni
,
M.
,
Panarotto
,
M.
,
Johansson
,
C.
, and
Larsson
,
T. C.
,
2016
, “
Value-Driven Product Service Systems Development: Methods and Industrial Applications
,”
CIRP J. Manuf. Sci. Technol.
,
15
, pp.
42
55
. 10.1016/j.cirpj.2016.04.008
28.
Lee
,
C.-H.
,
Chen
,
C.-H.
,
Li
,
F.
, and
Shie
,
A.-J.
,
2020
, “
Customized and Knowledge-Centric Service Design Model Integrating Case-Based Reasoning and TRIZ
,”
Expert Syst. Appl.
,
143
, p.
113062
. 10.1016/j.eswa.2019.113062
29.
Waris
,
M. M.
,
Sanin
,
C.
, and
Szczerbicki
,
E.
,
2018
, “
Smart Innovation Engineering: Toward Intelligent Industries of the Future
,”
Cybernetics Syst.
,
49
(
5-6
), pp.
339
354
. 10.1080/01969722.2017.1418708
30.
Lee
,
C.-H.
,
Chen
,
C.-H.
, and
Lee
,
Y.-C.
,
2020
, “
Customer Requirement-Driven Design Method and Computer-Aided Design System for Supporting Service Innovation Conceptualization Handling
,”
Adv. Eng. Inf.
,
45
, p.
101117
. 10.1016/j.aei.2020.101117
31.
Benabdellah
,
A. C.
,
Bouhaddou
,
I.
,
Benghabrit
,
A.
, and
Benghabrit
,
O.
,
2019
, “
A Systematic Review of Design for X Techniques From 1980 to 2018: Concepts, Applications, and Perspectives
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9
), pp.
3473
3502
. 10.1007/s00170-019-03418-6
32.
Li
,
X.
,
Chen
,
C.-H.
,
Zheng
,
P.
,
Wang
,
Z.
,
Jiang
,
Z.
, and
Jiang
,
Z.
,
2020
, “
A Knowledge Graph-Aided Concept–Knowledge Approach for Evolutionary Smart Product–Service System Development
,”
ASME J. Mech. Des.
,
142
(
10
). 10.1115/1.4046807
33.
Yang
,
L.
,
Cormican
,
K.
, and
Yu
,
M.
,
2019
, “
Ontology-Based Systems Engineering: A State-of-the-Art Review
,”
Comput. Ind.
,
111
, pp.
148
171
. 10.1016/j.compind.2019.05.003
34.
Thomsen
,
B.
,
Kokkolaras
,
M.
,
Mansson
,
T.
, and
Isaksson
,
O.
,
2017
, “
Quantitative Assessment of the Impact of Alternative Manufacturing Methods on Aeroengine Component Lifing Decisions
,”
ASME J. Mech. Des.
,
139
(
2
). 10.1115/1.4034883
35.
Mourtzis
,
D.
,
Papatheodorou
,
A. M.
, and
Fotia
,
S.
,
2018
, “
Development of a Key Performance Indicator Assessment Methodology and Software Tool for Product- Service System Evaluation and Decision-Making Support
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
). 10.1115/1.4040340
36.
Sakao
,
T.
, and
Lindahl
,
M.
,
2012
, “
A Value Based Evaluation Method for Product/Service System Using Design Information
,”
CIRP Ann.
,
61
(
1
), pp.
51
54
. 10.1016/j.cirp.2012.03.108
37.
Rondini
,
A.
,
Bertoni
,
M.
, and
Pezzotta
,
G.
,
2020
, “
At the Origins of Product Service Systems: Supporting the Concept Assessment With the Engineering Value Assessment Method
,”
CIRP J. Manuf. Sci. Technol.
,
29
, pp.
157
175
. 10.1016/j.cirpj.2018.08.002
38.
Costa
,
N.
,
Patrício
,
L.
,
Morelli
,
N.
, and
Magee
,
C. L.
,
2018
, “
Bringing Service Design to Manufacturing Companies: Integrating PSS and Service Design Approaches
,”
Des. Stud.
,
55
, pp.
112
145
. 10.1016/j.destud.2017.09.002
39.
Garetti
,
M.
,
Rosa
,
P.
, and
Terzi
,
S.
,
2012
, “
Life Cycle Simulation for the Design of Product–Service Systems
,”
Comput. Ind.
,
63
(
4
), pp.
361
369
. 10.1016/j.compind.2012.02.007
40.
Bertoni
,
A.
, and
Bertoni
,
M.
,
2020
, “
PSS Cost Engineering: A Model-Based Approach for Concept Design
,”
CIRP J. Manuf. Sci. Technol.
,
29
, pp.
176
190
. 10.1016/j.cirpj.2018.08.001
41.
Andriankaja
,
H.
,
Boucher
,
X.
, and
Medini
,
K.
,
2018
, “
A Method to Design Integrated Product-Service Systems Based on the Extended Functional Analysis Approach
,”
CIRP J. Manuf. Sci. Technol.
,
21
, pp.
120
139
. 10.1016/j.cirpj.2018.02.001
42.
Pereira Pessôa
,
M. V.
, and
Jauregui Becker
,
J. M.
,
2020
, “
Smart Design Engineering: A Literature Review of the Impact of the 4th Industrial Revolution on Product Design and Development
,”
Res. Eng. Des.
,
31
(
2
), pp.
175
195
. 10.1007/s00163-020-00330-z
43.
Burggräf
,
P.
,
Wagner
,
J.
, and
Weißer
,
T.
,
2020
, “
Knowledge-Based Problem Solving in Physical Product Development––A Methodological Review
,”
Expert Syst. Appl.
,
5
, p.
100025
. 10.1016/j.eswax.2020.100025
44.
Umeda
,
Y.
,
Takata
,
S.
,
Kimura
,
F.
,
Tomiyama
,
T.
,
Sutherland
,
J. W.
,
Kara
,
S.
,
Herrmann
,
C.
, and
Duflou
,
J. R.
,
2012
, “
Toward Integrated Product and Process Life Cycle Planning—An Environmental Perspective
,”
CIRP Ann.
,
61
(
2
), pp.
681
702
. 10.1016/j.cirp.2012.05.004
45.
Xu
,
Y.
,
Bernard
,
A.
,
Perry
,
N.
,
Xu
,
J.
, and
Sugimoto
,
S.
,
2014
, “
Knowledge Evaluation in Product Lifecycle Design and Support
,”
Knowledge-Based Syst.
,
70
, pp.
256
267
. 10.1016/j.knosys.2014.07.003
46.
Agostinho
,
C.
,
Ducq
,
Y.
,
Zacharewicz
,
G.
,
Sarraipa
,
J.
,
Lampathaki
,
F.
,
Poler
,
R.
, and
Jardim-Goncalves
,
R.
,
2016
, “
Towards a Sustainable Interoperability in Networked Enterprise Information Systems: Trends of Knowledge and Model-Driven Technology
,”
Comput. Ind.
,
79
, pp.
64
76
. 10.1016/j.compind.2015.07.001
47.
Duan
,
Y.
,
Edwards
,
J. S.
, and
Dwivedi
,
Y. K.
,
2019
, “
Artificial Intelligence for Decision Making in the Era of Big Data—Evolution, Challenges and Research Agenda
,”
Int. J. Inf. Manage.
,
48
, pp.
63
71
. 10.1016/j.ijinfomgt.2019.01.021
48.
Kheybari
,
S.
,
Rezaie
,
F. M.
, and
Farazmand
,
H.
,
2020
, “
Analytic Network Process: An Overview of Applications
,”
Appl. Math. Comput.
,
367
, p.
124780
. 10.1016/j.amc.2019.124780
49.
Ding
,
R.-X.
,
Palomares
,
I.
,
Wang
,
X.
,
Yang
,
G.-R.
,
Liu
,
B.
,
Dong
,
Y.
,
Herrera-Viedma
,
E.
, and
Herrera
,
F.
,
2020
, “
Large-Scale Decision-Making: Characterization, Taxonomy, Challenges and Future Directions From an Artificial Intelligence and Applications Perspective
,”
Information Fusion
,
59
, pp.
84
102
. 10.1016/j.inffus.2020.01.006
50.
Soman
,
D.
, and
Nmarandi
,
S.
,
2015
, “
Managing Customer Value
,”
Am. J. Bus.
,
14
(
1
), pp.
13
22
.
51.
Terziyan
,
V.
,
Gryshko
,
S.
, and
Golovianko
,
M.
,
2018
, “
Patented Intelligence: Cloning Human Decision Models for Industry 4.0
,”
J. Manuf. Syst.
,
48
, pp.
204
217
. 10.1016/j.jmsy.2018.04.019
52.
Shahin
,
M.
,
Chen
,
F. F.
,
Bouzary
,
H.
, and
Krishnaiyer
,
K.
,
2020
, “
Integration of Lean Practices and Industry 4.0 Technologies: Smart Manufacturing for Next-Generation Enterprises
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5
), pp.
2927
2936
. 10.1007/s00170-020-05124-0
53.
Bendul
,
J. C.
, and
Blunck
,
H.
,
2019
, “
The Design Space of Production Planning and Control for Industry 4.0
,”
Comput. Ind.
,
105
, pp.
260
272
. 10.1016/j.compind.2018.10.010
54.
Theorin
,
A.
,
Bengtsson
,
K.
,
Provost
,
J.
,
Lieder
,
M.
,
Johnsson
,
C.
,
Lundholm
,
T.
, and
Lennartson
,
B.
,
2017
, “
An Event-Driven Manufacturing Information System Architecture for Industry 4.0
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1297
1311
. 10.1080/00207543.2016.1201604
55.
Babiceanu
,
R. F.
, and
Seker
,
R.
,
2016
, “
Big Data and Virtualization for Manufacturing Cyber-Physical Systems: A Survey of the Current Status and Future Outlook
,”
Comput. Ind.
,
81
, pp.
128
137
. 10.1016/j.compind.2016.02.004
56.
Nellippallil
,
A. B.
,
Allen
,
J.
,
Gautham
,
B.
,
Singh
,
A.
, and
Mistree
,
F.
,
2020
,
Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes
,
Springer
,
Cham
.
57.
Milisavljevic-Syed
,
J.
,
Allen
,
J. K.
,
Commuri
,
S.
, and
Mistree
,
F.
,
2019
, “
Design of Networked Manufacturing Systems for Industry 4.0
,”
Procedia CIRP
,
81
, pp.
1016
1021
. 10.1016/j.procir.2019.03.244
58.
Cardin
,
M.-A.
,
2014
, “
Enabling Flexibility in Engineering Systems: A Taxonomy of Procedures and a Design Framework
,”
ASME J. Mech. Des.
,
136
.
59.
Wang
,
R.
,
Nellippallil
,
A. B.
,
Wang
,
G.
,
Yan
,
Y.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
Systematic Design Space Exploration Using a Template-Based Ontological Method
,”
Adv. Eng. Inf.
,
36
, pp.
163
177
. 10.1016/j.aei.2018.03.006
60.
Benabdellah
,
A. C.
,
Benghabrit
,
A.
, and
Bouhaddou
,
I.
,
2020
, “
Complexity Drivers in Engineering Design Toward a Decision Support System Based on an Organizational Perspective
,”
J. Eng. Des. Technol.
,
18
(
6
), pp.
1663
1690
.
61.
Smith
,
W. F.
,
Milisavljevic
,
J.
,
Sabeghi
,
M.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2015, “
The Realization of Engineered Systems with Considerations of Complexity
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information inEngineering Conference. Volume 7: 27th International Conference on Design Theory and Methodology
,
Boston, MA
,
Aug. 2–5
, ASME, p.
V007T006A019
.
62.
Milisavljevic-Syed
,
J.
,
Allen
,
J. K.
,
Commuri
,
S.
, and
Mistree
,
F.
,
2020
, “Adaptable Concurrent Realization of Networked Engineering Systems (ACRONES),”
Architecting Networked Engineered Systems
,
Springer
, pp.
71
111
.
63.
Ahmad
,
S.
,
Wong
,
K. Y.
,
Tseng
,
M. L.
, and
Wong
,
W. P.
,
2018
, “
Sustainable Product Design and Development: A Review of Tools, Applications and Research Prospects
,”
Resources, Conservation Recycling
,
132
, pp.
49
61
. 10.1016/j.resconrec.2018.01.020
64.
Rocha
,
C. S.
,
Antunes
,
P.
, and
Partidário
,
P.
,
2019
, “
Design for Sustainability Models: A Multiperspective Review
,”
J. Cleaner Prod.
,
234
, pp.
1428
1445
. 10.1016/j.jclepro.2019.06.108
65.
Ma
,
J.
, and
Kremer
,
G. E. O.
,
2016
, “
A Systematic Literature Review of Modular Product Design (MPD) From the Perspective of Sustainability
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5
), pp.
1509
1539
. 10.1007/s00170-015-8290-9
66.
Panchal
,
J. H.
,
Paredis
,
C. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2009
, “
Managing Design-Process Complexity: A Value-of-Information Based Approach for Scale and Decision Decoupling
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021005
. 10.1115/1.3130791
67.
Ceschin
,
F.
, and
Gaziulusoy
,
I.
,
2016
, “
Evolution of Design for Sustainability: From Product Design to Design for System Innovations and Transitions
,”
Des. Stud.
,
47
, pp.
118
163
. 10.1016/j.destud.2016.09.002
68.
Liu
,
B.
,
Huang
,
S.
,
Fan
,
W.
,
Xiao
,
T.
,
Humann
,
J.
,
Lai
,
Y.
, and
Jin
,
Y.
,
2016
, “
Data Driven Uncertainty Evaluation for Complex Engineered System Design
,”
Chin. J. Mech. Eng.
,
29
(
5
), pp.
889
900
. 10.3901/CJME.2016.0422.058
69.
Erkoyuncu
,
J. A.
,
Roy
,
R.
,
Shehab
,
E.
, and
Cheruvu
,
K.
,
2011
, “
Understanding Service Uncertainties in Industrial Product–Service System Cost Estimation
,”
Int. J. Adv. Manuf. Technol.
,
52
(
9
), pp.
1223
1238
. 10.1007/s00170-010-2767-3
70.
Wang
,
R.
,
Nellippallil
,
A. B.
,
Wang
,
G.
,
Yan
,
Y.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2019
, “
Ontology-Based Uncertainty Management Approach in Designing of Robust Decision Workflows
,”
J. Eng. Des.
,
30
(
10-12
), pp.
726
757
. 10.1080/09544828.2019.1668918
71.
Zha
,
X. F.
, and
Du
,
H.
,
2006
, “
Knowledge-Intensive Collaborative Design Modeling and Support
,”
Comput. Ind.
,
57
(
1
), pp.
56
71
. 10.1016/j.compind.2005.04.006
72.
La Rocca
,
G.
,
2012
, “
Knowledge Based Engineering: Between AI and CAD. Review of a Language Based Technology to Support Engineering Design
,”
Adv. Eng. Inf.
,
26
(
2
), pp.
159
179
. 10.1016/j.aei.2012.02.002
73.
Regli
,
W. C.
,
Hu
,
X.
,
Atwood
,
M.
, and
Sun
,
W.
,
2000
, “
A Survey of Design Rationale Systems: Approaches, Representation, Capture and Retrieval
,”
Eng. Comput.
,
16
(
3-4
), pp.
209
235
. 10.1007/PL00013715
74.
Schreiber
,
A. T.
,
Schreiber
,
G.
,
Akkermans
,
H.
,
Anjewierden
,
A.
,
Shadbolt
,
N.
,
de Hoog
,
R.
,
Van de Velde
,
W.
,
Shadbolt
,
N. R.
,
Wielinga
,
B.
, and
Nigel
,
R.
,
2000
,
Knowledge Engineering and Management: the CommonKADS Methodology
,
MIT Press
.
75.
Muster
,
D.
, and
Mistree
,
F.
,
1988
, “
The Decision Support Problem Technique in Engineering Design
,”
Int. J. Appl. Eng. Educ.
,
4
(
1
), pp.
23
33
.
76.
Hatchuel
,
A.
, and
Weil
,
B.
,
2009
, “
CK Design Theory: An Advanced Formulation
,”
Res. Eng. Des.
,
19
(
4
), p.
181
192
. 10.1007/s00163-008-0043-4
77.
Mistree
,
F.
,
Smith
,
W.
,
Bras
,
B.
,
Allen
,
J.
, and
Muster
,
D.
,
1990
, “
Decision-Based Design: A Contemporary Paradigm for Ship Design
,”
Trans. Soc. Naval Architects Marine Eng.
,
98
, pp.
565
597
.
78.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
. 10.1115/1.2202880
79.
Chen
,
W.
,
Allen
,
J. K.
,
Mavris
,
D. N.
, and
Mistree
,
F.
,
1996
, “
A Concept Exploration Method for Determining Robust Top-Level Specifications
,”
Eng. Optimization+ A35
,
26
(
2
), pp.
137
158
. 10.1080/03052159608941114
80.
Choi
,
H. J.
,
Mcdowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
Eng. Optimization
,
40
(
4
), pp.
287
307
. 10.1080/03052150701742201
81.
Hou
,
L.
, and
Jiao
,
R. J.
,
2020
, “
Data-informed Inverse Design by Product Usage Information: A Review, Framework and Outlook
,”
J. Intell. Manuf.
,
31
(
3
), pp.
529
552
. 10.1007/s10845-019-01463-2
82.
Milisavljevic-Syed
,
J.
,
Allen
,
J. K.
,
Commuri
,
S.
, and
Mistree
,
F.
,
2020
,
Architecting Networked Engineered Systems
,
Springer International Publishing
.
83.
Milisavljevic
,
J.
,
Commuri
,
S.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
A Concurrent Design Exploration Method for Realizing Networked Manufacturing Systems
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 22nd Design for Manufacturing and the Life Cycle Conference; 11th International Conference on Micro- and Nanosystems
,
Cleveland, OH
,
Aug. 6–9
.
84.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
756
762
. 10.1115/1.2833137
85.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2002
, “
Design Evaluation of Multi-Station Assembly Processes by Using State Space Approach
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
408
418
. 10.1115/1.1485744
You do not currently have access to this content.