Abstract

Existing research on synthesis methods for single degree-of-freedom (DOF) six-bar linkages mainly include four or five exact poses. However, an ideal trajectory cannot be synthesized using only five exact poses, thus, it is necessary to introduce additional poses to constrain the trajectory. If more exact poses are introduced, then the linkage may have no solution. Therefore, the constraints of the approximate pose are considered to make the trajectory conform to the desired trajectory. This paper successfully introduces mixed poses into a six-bar linkage, based on Z (Z < 5) exact poses and K approximate poses of a given error range, and a new synthesis method for single DOF six-bar linkages is proposed. The solution domain of the linkages synthesized by this method is wide and can be adjusted by controlling the error of the approximate poses, which reduces the difficulty of selecting the solution, ensures theoretical feasibility, and enables the trajectory of the final linkage to more closely match the ideal trajectory. Finally, for the coordinated training of multiple joints in human limbs, a rehabilitation device is designed based on the above six-bar linkage, and a prototype is developed and tested. The test results reveal the accuracy of the proposed method and the effectiveness of rehabilitation training.

References

1.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
Springer
,
New York
, Chap. 6.
2.
Gogate
,
G. R.
, and
Matekar
,
S. B.
,
2012
, “
Optimum Synthesis of Motion Generating Four-Bar Mechanisms Using Alternate Error Functions
,”
Mech. Mach. Theory
,
54
(
4
), pp.
41
46
. 10.1016/j.mechmachtheory.2012.03.007
3.
Han
,
J. Y.
, and
Cao
,
Y.
,
2019
, “
Analytical Synthesis Methodology of RCCC Linkages for the Specified Four Poses
,”
Mech. Mach. Theory
,
133
(
3
), pp.
531
544
. 10.1016/j.mechmachtheory.2018.12.005
4.
Sun
,
J. W.
,
Chen
,
L.
, and
Chu
,
J. K.
,
2016
, “
Motion Generation of Spherical Four-Bar Mechanism Using Harmonic Characteristic Parameters
,”
Mech. Mach. Theory
,
95
(
1
), pp.
76
92
. 10.1016/j.mechmachtheory.2015.08.020
5.
Burmester
,
L.
,
1888
,
Lehrbuch der Kinematik
,
Verlag Von Arthur Felix
,
Leipzig
.
6.
Han
,
J. Y.
, and
Qian
,
W. X.
,
2008
, “
On the Solution of Region-Based Planar Four-Bar Motion Generation
,”
Mech. Mach. Theory
,
44
(
2
), pp.
457
465
. 10.1016/j.mechmachtheory.2008.03.005
7.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Robot.
,
9
(
6
), p.
061005
. 10.1115/1.4037801
8.
Ge
,
Q. J.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Li
,
X. Y.
,
2012
, “
A Novel Approach to Algebraic Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), pp.
1587
1596
. 10.1115/1.4007447.
9.
Ge
,
Q. J.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2017
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031011
. 10.1115/1.4035528
10.
Zhao
,
P.
,
Li
,
X. Y.
,
Zhu
,
L. H.
,
Zi
,
B.
, and
Ge
,
Q. J.
,
2016
, “
A Novel Motion Synthesis Approach With Expandable Solution Space for Planar Linkages Based on Kinematic-Mapping
,”
Mech. Mach. Theory
,
105
(
11
), pp.
164
175
. 10.1016/j.mechmachtheory.2016.06.021
11.
Li
,
X. Y.
,
Ge
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2015
, “
A Unified Algorithm for Analysis and Simulation of Planar Four-Bar Motions Defined With R- and P-Joints
,”
ASME J. Mech. Robot.
,
7
(
1
), p.
011014
. 10.1115/1.4029295
12.
Purwar
,
A.
,
Jin
,
Z.
, and
Ge
,
Q. J.
,
2008
, “
Rational Motion Interpolation Under Kinematic Constraints of Spherical 6R Closed Chains
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062301
. 10.1115/1.2898879
13.
Purwar
,
A.
,
Deshpande
,
S.
, and
Ge
,
Q. J.
,
2017
, “
MotionGen: Interactive Design and Editing of Planar Four-Bar Motions for Generating Pose and Geometric Constraints
,”
ASME J. Mech. Robot.
,
9
(
2
), p.
024504
. 10.1115/1.4035899
14.
Purwar
,
A.
,
Jin
,
Z.
, and
Ge
,
Q. J.
,
2008
, “
Computer Aided Synthesis of Piecewise Rational Motions for Spherical 2R and 3R Robot Arms
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112301
. 10.1115/1.2976444
15.
Schrocker
,
H. P.
,
Husty
,
M. L.
, and
McCarthy
,
J. M.
,
2007
, “
Kinematic Mapping Based Assembly Mode Evaluation of Planar Four-Bar Mechanisms
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
924
929
. 10.1115/1.2747635
16.
Wu
,
J.
,
Li
,
X. Y.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Liu
,
X. Y.
,
2017
, “
A Line Geometric Approach to Kinematic Acquisition of Geometric Constraints
,”
ASME J. Mech. Robot.
,
9
(
4
), p.
041004
. 10.1115/1.4036222
17.
Soh
,
G. S.
, and
McCarthy
,
J. M.
,
2008
, “
The Synthesis of Six-Bar Linkages as Constrained Planar 3R Chains
,”
Mech. Mach. Theory
,
43
(
2
), pp.
160
170
. 10.1016/j.mechmachtheory.2007.02.004
18.
Cui
,
G. Z.
,
2017
, “
Research on Synthesis Theory and Method of Multi-Bar Linkages Based on Solution Region
,”
Ph.D. thesis
,
University of Science and Technology Beijing
,
Beijing
.
19.
Cui
,
G. Z.
, and
Han
,
J. Y.
,
2016
, “
The Solution Region-Based Synthesis Methodology for 1-DOF Eight-Bar Linkage
,”
Mech. Mach. Theory
,
98
(
4
), pp.
231
241
. 10.1016/j.mechmachtheory.2015.12.011
20.
Zhao
,
P.
,
Li
,
X. Y.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2016
, “
A Task-Driven Unified Synthesis of Planar Four-Bar and Six-bar Linkages with R- and P-Joints for Five-Position Realization
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
061003
. 10.1115/1.4033434
21.
Bai
,
S. P.
,
Wang
,
D. L.
, and
Dong
,
H. M.
,
2016
, “
A Unified Formulation for Dimensional Synthesis of Stephenson Linkages
,”
ASME J. Mech. Robot.
,
8
(
4
), p.
041009
. 10.1115/1.4032701
22.
De Sa
,
S.
,
1979
,
Classification and Properties of Planar Motions Using Kinematic Mappings
,
Stanford University
,
Stanford
.
23.
Hayes
,
M. J. D.
,
Luu
,
T.
, and
Chang
,
X. W.
,
2004
, “Kinematic Mapping Application to Approximate Type and Dimension Synthesis of Planar Mechanisms,”
On Advances in Robot Kinematics
,
J.
Lenarčič
, and
C.
Galletti
, eds.,
Springer
,
Dordrecht
, pp.
41
48
.
24.
Zhao
,
P.
,
Ge
,
X.
,
Zi
,
B.
, and
Ge
,
Q. J.
,
2016
, “
Planar Linkage Synthesis for Mixed Exact and Approximated Motion Realization Via Kinematic Mapping
,”
ASME J. Mech. Robot.
,
8
(
5
), p.
051004
. 10.1115/1.4032212
25.
Li
,
X. Y.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2018
, “
A Unified Approach to Exact and Approximate Motion Synthesis of Spherical Four-bar Linkages Via Kinematic Mapping
,”
ASME J. Mech. Robot.
,
10
(
1
), p.
011003
. 10.1115/1.4038305
26.
Zhao
,
J. S.
,
Yan
,
Z. F.
, and
Ye
,
L.
,
2014
, “
Design of Planar Four-Bar Linkage With n Specified Positions for a Flapping Wing Robot
,”
Mech. Mach. Theory
,
82
(
12
), pp.
33
55
. 10.1016/j.mechmachtheory.2014.07.006
27.
Tsuge
,
B. Y.
, and
McCarthy
,
J. M.
,
2015
, “Fitting Useful Planar Four-Bar and Six-Bar Linkages to Over-Specified Tasks,”
Interdisciplinary Applications of Kinematics
,
A.
Kecskeméthy
,
F.
Geu Flores
,
E.
Carrera
, and
D. A.
Elias
, eds.,
Springer International Publishing
,
Switzerland
, pp.
171
178
.
28.
Shen
,
Z. F.
,
Allison
,
G.
, and
Cui
,
L.
,
2018
, “
An Integrated Type and Dimensional Synthesis Method to Design One Degree-of-Freedom Planar Linkages With Only Revolute Joints for Exoskeletons
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092302
. 10.1115/1.4040486
29.
Andrysek
,
J.
,
Leineweber
,
M. J.
, and
Lee
,
H.
,
2017
, “
Development and Evaluation of a Mechanical Stance-Controlled Orthotic Knee Joint With Stance Flexion
,”
ASME J. Mech. Des.
,
139
(
3
), p.
035001
. 10.1115/1.4035372
30.
Gao
,
F.
,
Liu
,
Y. N.
, and
Liao
,
W. H.
,
2018
, “
Design of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
,”
ASME J. Mech. Des.
,
140
(
5
), p.
055001
. 10.1115/1.4039385
31.
Aginaga
,
J.
,
Iriarte
,
X.
,
Plaza
,
A.
, and
Mata
,
V.
,
2018
, “
Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092304
. 10.1115/1.4040168
32.
Soh
,
G. S.
,
Perez-Gracia
,
A.
, and
McCarthy
,
J. M.
,
2006
, “The Kinematic Synthesis of Mechanically Constrained Planar 3R Chains,”
Proc. EUCOMES 1st ECMS
,
M.
Husty
and
H. P.
Schrocker
, eds.,
Obergurgl, Austria
, pp.
1
17
.
33.
Demaine
,
E. D.
, and
O’Rourke
,
J.
,
2007
,
Geometric Folding Algorithms
,
Cambridge University Press, Cambridge
,
New York
.
34.
Zhu
,
L. H.
,
2016
, “
Kinematic Mapping Based Planar Motion Synthesis Theory and Its Application in Rehabilitation Mechanisms
,”
Ph.D. thesis
,
Hefei University of Technology
,
Hefei, Anhui
.
35.
Ding
,
Y. L.
,
2017
,
Man Machine Engineering
,
Beijing Institute of Technology Press
,
Beijing, China
, Chap. 5.
You do not currently have access to this content.