Abstract

Ever since its introduction over five decades ago, geometric solid modeling has been crucial for engineering design purposes and is used in engineering software packages such as computer-aided design (cad), computer-aided manufacturing, computer-aided engineering, etc. Solid models produced by cad software have been used to transfer geometric information from designers to manufacturers. Since the emergence of additive manufacturing (AM), a CAD file can also be directly uploaded to a three-dimensional (3D) printer and used for production. AM techniques allow manufacturing of complex geometric objects such as bio-inspired structures and lattice structures. These structures are shapes inspired by nature and periodical geometric shapes consisting of struts interconnecting in nodes. Both structures have unique properties such as significantly reduced weight. However, geometric modeling of such structures has significant challenges due to the inability of current techniques to handle their geometric complexity. This calls for a novel modeling method that would allow engineers to design complex geometric objects. This survey paper reviews geometric modeling methods of complex structures to support bio-inspired design created for AM which includes discussing reasoning behind bio-inspired design, limitations of current modeling approaches applied to bio-inspired structures, challenges encountered with geometric modeling, and opportunities that these challenges reveal. Based on the review, a need for a novel geometric modeling method for bio-inspired geometries produced by AM is identified. A framework for such a bio-inspired geometric modeling method is proposed as a part of this work.

References

1.
Li
,
S.
,
Bai
,
H.
,
Shepherd
,
R. F.
, and
Zhao
,
H.
,
2019
, “
Bio-Inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces
,”
Angew. Chem. Int. Ed.
,
58
(
33
), pp.
11182
11204
.
2.
Dmitry
,
B.
,
2016
, “
Evening Light, Kiyomizu-Dera Temple, Kyoto
,” https://www.flickr.com/photos/ru_boff/31734103446
3.
Weiskittel
,
A. R.
,
Kershaw
,
J. A.
,
Hofmeyer
,
P. V.
, and
Seymour
,
R. S.
,
2009
, “
Species Differences in Total and Vertical Distribution of Branch- and Tree-Level Leaf Area for the Five Primary Conifer Species in Maine, USA
,”
For. Ecol. Manage.
,
258
(
7
), pp.
1695
1703
.
4.
Fazio
,
M. W.
,
Moffett
,
M.
, and
Wodehouse
,
L.
,
2013
,
A World History of Architecture
, 3rd ed.,
Laurence King
,
London
.
5.
Lutfi
,
M.
,
2018
, “
The Effect of Gravitational Field on Brachistochrone Problem
,”
J. Phys. Conf. Ser.
,
1028
, p.
012060
.
6.
Ashby
,
N.
,
Brittin
,
W. E.
,
Love
,
W. F.
, and
Wyss
,
W.
,
1975
, “
Brachistochrone With Coulomb Friction
,”
Am. J. Phys.
,
43
(
10
), pp.
902
906
.
7.
Monn
,
M. A.
,
2017
, “
Learning New Tricks from Sea Sponges, Nature’s Most Unlikely Civil Engineers
,” The Conversation, https://theconversation.com/learning-new-tricks-from-sea-sponges-natures-most-unlikely-civil-engineers-80373
8.
Li
,
L.
,
Guo
,
C.
,
Chen
,
Y.
, and
Chen
,
Y.
,
2020
, “
Optimization Design of Lightweight Structure Inspired by Glass Sponges (Porifera, Hexacinellida) and Its Mechanical Properties
,”
Bioinspir. Biomim.
,
15
(
3
), p.
036006
.
9.
Rayker
,
K.
,
2008
,
10.
Redback Aviation
,
2017
, “
Understanding Rotor Blades—The Rotary Wing
,” Redback Aviation, http://www.redbackaviation.com/understanding-rotor-blades-the-rotary-wing/
11.
Bar-Cohen
,
Y.
,
2005
,
Biomimetics. Biologically Inspired Technologies
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
12.
Kerrick
,
D.
,
2011
, “
From Wood to Composite Materials The Evolution of the Rotor Blade
,”
Helicopter Maintenance Magazine
, https://helicoptermaintenancemagazine.com/article/wood-composite-materials-evolution-rotor-blade
13.
ASTM
,
2015
,
ASTM F2792-12a: Standard Terminology for Additive Manufacturing Technologies
,
ASTM International
,
West Conshohocken, PA
.
14.
Dassault Systèmes SE
,
2020
, “
SOLIDWORKS and SW Data Management System Requirements
,” SOLIDWORKS, https://www.solidworks.com/sw/support/SystemRequirements.html
15.
Robert McNeel & Associates
,
2020
, “
System Requirements
,” Rhino System Requirements, https://www.rhino3d.com/6/system_requirements
16.
Kamaci
,
N.
, and
Altunbasak
,
Y.
,
2003
, “
Performance Comparison of the Emerging H.264 Video Coding Standard With the Existing Standards
,”
Proceedings of the 2003 International Conference on Multimedia and Expo. ICME’03
,
IEEE
, pp.
I
345
, Cat. No. 03TH8698.
17.
Kianian
,
B.
,
2017
, “
Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report
,” 22nd ed.
Wohlers Associates, Inc.
18.
Attene
,
M.
,
2018
, “
As-Exact-as-Possible Repair of Unprintable STL Files
,”
Rapid Prototyp. J.
,
24
(
5
), pp.
855
864
.
19.
Wohlers
,
T. T.
, and
Gornet
,
T.
,
2014
, “
History of Additive Manufacturing
,”
Wohlers Rep.
,
24
(
2014
), p.
118
.
20.
Taufik
,
M.
, and
Jain
,
P.
,
2016
, “
Additive Manufacturing: Current Scenario
,”
International Conference on Advanced Production and Industrial Engineering, ICAPIE 2016
,
New Delhi, India
,
Dec. 10
, pp.
380
386
.
21.
Hamelin
,
R. D.
,
Walden
,
D. D.
, and
Krueger
,
M. E.
,
2010
, “
4.4.2 INCOSE Systems Engineering Handbook v3.2: Improving the Process for SE Practitioners
,”
INCOSE Int. Symp.
,
20
(
1
), pp.
532
541
.
22.
Edalat
,
A.
, and
Lieutier
,
A.
,
2002
, “
Foundation of a Computable Solid Modelling
,”
Theor. Comput. Sci.
,
284
(
2
), pp.
319
345
.
23.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput. Aided Des.
,
39
(
4
), pp.
284
301
.
24.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des.
,
4
(
5
), pp.
585
594
.
25.
Dimas
,
L. S.
, and
Buehler
,
M. J.
,
2014
, “
Modeling and Additive Manufacturing of Bio-Inspired Composites With Tunable Fracture Mechanical Properties
,”
Soft Matter
,
10
(
25
), p.
4436
.
26.
Panda
,
B. N.
,
2015
, “
Design and Development of Cellular Structure for Additive Manufacturing
,”
Ph.D. thesis
,
National Institute of Technology Rourkela
,
Rourkela, India
.
27.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
569
590
.
28.
C3D Labs
,
2016
, “
C3D Toolkit. Developer Manual
,” https://c3dlabs.com/source/pdf/c3d/2016-C3D_Manual_English.pdf
29.
Gu
,
G. X.
,
Su
,
I.
,
Sharma
,
S.
,
Voros
,
J. L.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Three-Dimensional-Printing of Bio-Inspired Composites
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021006
.
30.
Savio
,
G.
,
Rosso
,
S.
,
Meneghello
,
R.
, and
Concheri
,
G.
,
2018
, “
Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review
,”
Appl. Bionics Biomech.
,
2018
, pp.
1654782:1
1654782:14
.
31.
Golovanov
,
N.
,
2014
,
Geometric Modeling
,
CreateSpace Independent Publishing Platform
,
Scotts Valley, CA
.
32.
Gardan
,
Y.
,
1985
,
Mathematics and CAD: Numerical Methods for CAD
,
The MIT Press
,
Cambridge, MA
.
33.
Ushakov
,
D. M.
,
2018
,
Introduction to the Mathematical Foundations of CAD
, 2nd ed.,
DMK Press
,
Moscow, Russia
.
34.
Ushakov
,
D. M.
,
2012
, “
Russian National 3D Kernel
,” Isicad, http://isicad.net/articles.php?article_num=15189
35.
Schnitger Corporation
,
2012
,
New Math. The Hidden Cost of Swapping CAD Kernels
,
Schnitger Corporation
, https://schnitgercorp.com/wp-content/uploads/2020/12/SchnitgerCorp-Hidden-Cost-of-Kernel-Change-2020.pdf
36.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2015
,
A Practical Guide to SysML
, 3rd ed.,
S.
Elliot
, ed.,
Elsevier
,
Waltham, MA
, pp.
417
504
.
37.
Hosaka
,
M.
,
2012
,
Modeling of Curves and Surfaces in CAD/CAM
,
Springer Science and Business Media
,
Berlin, Germany
.
38.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
Vis. Comput.
,
11
(
8
), pp.
429
446
.
39.
Hatcher
,
A.
,
2002
,
Algebraic Topology
,
No eBook available Cambridge University Press
,
Cambridge
.
40.
Letov
,
N.
, and
Zhao
,
Y. F.
,
2020
, “
Volumetric Cells: A Framework for a Bio-Inspired Geometric Modelling Method to Support Heterogeneous Lattice Structures
,”
Proceedings of the Design Society: DESIGN Conference
,
Dubrovnik, Croatia
,
May 1
, pp.
295
304
.
41.
Braun
,
P.
,
Sliwinski
,
M.
,
Hinckeldeyn
,
J.
, and
Kreutzfeldt
,
J.
,
2021
, “
Challenges of CAD Conversion to 3D Development Environments With Respect to Kinematic Dependencies
,”
Proceedings of SIMS 2020
,
Virtual, Finland
,
Sept. 22–24
, pp.
215
221
.
42.
FEA for All
,
2015
, “
Get the Proper Mesh Density
,” https://feaforall.com/get-proper-mesh-density/
43.
Cutanda
,
V.
,
Juhl
,
P. M.
, and
Jacobsen
,
F.
,
2001
, “
On the Modeling of Narrow Gaps Using the Standard Boundary Element Method
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1296
1303
.
44.
Enterfea
,
2017
, “
Correct Mesh Size—A Quick Guide
,” https://enterfea.com/correct-mesh-size-quick-guide/
45.
Gillebaart
,
T.
,
van Zuijlen
,
A.
, and
Bijl
,
H.
,
2016
, “
Radial Basis Function Mesh Deformation Including Surface Orthogonality
,”
54th AIAA Aerospace Sciences Meeting
,
Reston, VA
,
Jan. 4–8
, pp.
1
7
.
46.
Kedward
,
L.
,
Allen
,
C. B.
, and
Rendall
,
T.
,
2017
, “
Efficient and Exact Mesh Deformation Using Multi-Scale RBF Interpolation
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
, pp.
1
19
.
47.
Zhao
,
Z.
,
Ma
,
R.
,
He
,
L.
,
Chang
,
X.
, and
Zhang
,
L.
,
2020
, “
An Efficient Large-Scale Mesh Deformation Method Based on MPI/OpenMP Hybrid Parallel Radial Basis Function Interpolation
,”
Chin. J. Aeronaut.
,
33
(
5
), pp.
1392
1404
.
48.
Stroud
,
I.
,
2006
,
Boundary Representation Modelling Techniques
,
Springer Nature
,
London, UK
.
49.
Sánchez-Reyes
,
J.
,
1995
, “
Quasinonparametric Surfaces
,”
Comput. Aided Des.
,
27
(
4
), pp.
263
275
.
50.
Song
,
Y.
, and
Cohen
,
E.
,
2019
, “
Refinement for a Hybrid Boundary Representation and Its Hybrid Volume Completion
,”
SMAI J. Comput. Math.
,
S5
, pp.
3
25
.
51.
Wang
,
X.
, and
Qian
,
X.
,
2014
, “
An Optimization Approach for Constructing Trivariate B-Spline Solids
,”
Comput. Aided Des.
,
46
, pp.
179
191
.
52.
Sasaki
,
Y.
,
Takezawa
,
M.
,
Kim
,
S.
,
Kawaharada
,
H.
, and
Maekawa
,
T.
,
2017
, “
Adaptive Direct Slicing of Volumetric Attribute Data Represented by Trivariate B-Spline Functions
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
1791
1807
.
53.
Rogers
,
D. F.
,
2001
,
An Introduction to NURBS: With Historical Perspective
,
Morgan Kaufmann
,
Burlington, MA
.
54.
Schmidt
,
R.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2012
, “
Isogeometric Analysis of Trimmed NURBS Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
241–244
, pp.
93
111
.
55.
Boender
,
E.
,
Bronsvoort
,
W. F.
, and
Post
,
F. H.
,
1994
, “
Finite-Element Mesh Generation From Constructive-Solid-Geometry Models
,”
Comput. Aided Des.
,
26
(
5
), pp.
379
392
.
56.
Joan-Arinyo
,
R.
,
Pérez-Vidal
,
L.
, and
Vilaplana-Pastó
,
J.
,
2000
,
CAD Tools and Algorithms for Product Design
, 1st ed.,
P.
Brunet
,
C.
Hoffmann
, and
D.
Roller
, eds.,
Springer
,
Berlin
, pp.
165
177
.
57.
Makhlouf
,
A. B.
,
Louhichi
,
B.
,
Mahjoub
,
M. A.
, and
Deneux
,
D.
,
2019
, “
Reconstruction of a CAD Model From the Deformed Mesh Using B-Spline Surfaces
,”
Int. J. Comput. Integr. Manuf.
,
32
(
7
), pp.
669
681
.
58.
Raja
,
F.
,
2019
, “
Evaluation of Properties of Triply Periodic Minimal Surface Structures Using ANSYS
,”
Master thesis
,
Arizona State University
,
Tempe, AZ
.
59.
Martin
,
W.
,
Cohen
,
E.
,
Fish
,
R.
, and
Shirley
,
P.
,
2000
, “
Practical Ray Tracing of Trimmed NURBS Surfaces
,”
J. Graph. Tools
,
5
(
1
), pp.
27
52
.
60.
Raviv
,
A.
, and
Elber
,
G.
,
2001
, “
Interactive Direct Rendering of Trivariate B-Spline Scalar Functions
,”
IEEE Trans. Vis. Comput. Graph.
,
7
(
2
), pp.
109
119
.
61.
Velivela
,
P. T.
,
2018
, “
Masking Materials and Bio-Inspired Caps for Chemical Etching of Dental Implants
,” Politecnico di Milano, https://www.politesi.polimi.it/handle/10589/143135
62.
Autumn
,
K.
,
Liang
,
Y. A.
,
Tonia Hsieh
,
S.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.
63.
Autumn
,
K.
,
Sitti
,
M.
,
Liang
,
Y. A.
,
Peattie
,
A. M.
,
Hansen
,
W. R.
,
Sponberg
,
S.
,
Kenny
,
T. W.
,
Fearing
,
R.
,
Israelachvili
,
J. N.
, and
Full
,
R. J.
,
2002
, “
Evidence for van Der Waals Adhesion in Gecko Setae
,”
Proc. Natl. Acad. Sci. U.S.A.
,
99
(
19
), pp.
12252
12256
.
64.
Song
,
Y.
,
Dai
,
Z.
,
Wang
,
Z.
,
Ji
,
A.
, and
Gorb
,
S. N.
,
2016
, “
The Synergy Between the Insect-Inspired Claws and Adhesive Pads Increases the Attachment Ability on Various Rough Surfaces
,”
Sci. Rep.
,
6
(
1
), p.
26219
.
65.
Federle
,
W.
,
Riehle
,
M.
,
Curtis
,
A. S. G.
, and
Full
,
R. J.
,
2002
, “
An Integrative Study of Insect Adhesion: Mechanics and Wet Adhesion of Pretarsal Pads in Ants
,”
Integr. Comput. Biol.
,
42
(
6
), pp.
1100
1106
.
66.
Huang
,
J.
,
Chiam
,
S. Y.
,
Tan
,
H. H.
,
Wang
,
S.
, and
Chim
,
W. K.
,
2010
, “
Fabrication of Silicon Nanowires With Precise Diameter Control Using Metal Nanodot Arrays as a Hard Mask Blocking Material in Chemical Etching
,”
Chem. Mater.
,
22
(
13
), pp.
4111
4116
.
67.
Alsheghri
,
A.
,
Reznikov
,
N.
,
Piché
,
N.
,
McKee
,
M. D.
,
Tamimi
,
F.
, and
Song
,
J.
,
2021
, “
Optimization of 3D Network Topology for Bioinspired Design of Stiff and Lightweight Bone-Like Structures
,”
Mater. Sci. Eng. C
,
123
, p.
112010
.
68.
Liu
,
K.
, and
Jiang
,
L.
,
2011
, “
Bio-Inspired Design of Multiscale Structures for Function Integration
,”
Nano Today
,
6
(
2
), pp.
155
175
.
69.
Schmidt-Nielsen
,
B.
,
Schmidt-Nielsen
,
K.
,
Houpt
,
T. R.
, and
Jarnum
,
S. A.
,
1956
, “
Water Balance of the Camel
,”
Am. J. Physiol. Legacy Content
,
185
(
1
), pp.
185
194
.
70.
Han
,
Z.
,
Mu
,
Z.
,
Yin
,
W.
,
Li
,
W.
,
Niu
,
S.
,
Zhang
,
J.
, and
Ren
,
L.
,
2016
, “
Biomimetic Multifunctional Surfaces Inspired From Animals
,”
Adv. Colloid Interface Sci.
,
234
, pp.
27
50
.
71.
Nagy
,
K. A.
,
2004
, “
Water Economy of Free-Living Desert Animals
,”
Int. Congr. Ser.
,
1275
, pp.
291
297
.
72.
Youssef
,
B. B.
,
2013
,
Procedia Computer Science
,
V.
Alexandrov
,
M.
Lees
,
V.
Krzhizhanovskaya
,
J.
Dongarra
, and
P. M. A.
Sloot
, eds.,
Elsevier
,
Baltimore, MD
, pp.
391
398
.
73.
Fantini
,
M.
,
Curto
,
M.
, and
De Crescenzio
,
F.
,
2016
, “
A Method to Design Biomimetic Scaffolds for Bone Tissue Engineering Based on Voronoi Lattices
,”
Virtual Phys. Prototyp.
,
11
(
2
), pp.
77
90
.
74.
Gómez-Gálvez
,
P.
,
Vicente-Munuera
,
P.
,
Tagua
,
A.
,
Forja
,
C.
,
Castro
,
A. M.
,
Letrán
,
M.
,
Valencia-Expósito
,
A.
,
Grima
,
C.
,
Bermúdez-Gallardo
,
M.
,
Serrano-Pérez-Higueras
,
Ó.
,
Cavodeassi
,
F.
,
Sotillos
,
S.
,
Martín-Bermudo
,
M. D.
,
Márquez
,
A.
,
Buceta
,
J.
, and
Escudero
,
L. M.
,
2018
, “
Scutoids Are a Geometrical Solution to Three-Dimensional Packing of Epithelia
,”
Nat. Commun.
,
9
(
1
), p.
2960
.
75.
Strand
,
R.
,
2004
, “
Surface Skeletons in Grids With Non-Cubic Voxels
,”
Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004)
,
Cambridge, UK
,
Aug. 26
, IEEE, Vol. 1, pp.
548
551
.
76.
Laine
,
S.
, and
Karras
,
T.
,
2011
, “
Efficient Sparse Voxel Octrees
,”
IEEE Trans. Vis. Comput. Graph.
,
17
(
8
), pp.
1048
1059
.
77.
Schulz
,
H.
,
2009
, “
Polyhedral Approximation and Practical Convex Hull Algorithm for Certain Classes of Voxel Sets
,”
Discret. Appl. Math.
,
157
(
16
), pp.
3485
3493
.
78.
Minc
,
N.
,
Burgess
,
D.
, and
Chang
,
F.
,
2011
, “
Influence of Cell Geometry on Division-Plane Positioning
,”
Cell
,
144
(
3
), pp.
414
426
.
79.
Schmick
,
M.
, and
Bastiaens
,
P. I. H.
,
2014
, “
The Interdependence of Membrane Shape and Cellular Signal Processing
,”
Cell
,
156
(
6
), pp.
1132
1138
.
80.
Kils
,
U.
,
1983
, “
Swimming and Feeding of Antarctic Krill, Euphausia Superba—Some Outstanding Energetics and Dynamics—Some Unique Morphological Details
,”
Ber. Polarforsch.
,
4
, pp.
130
155
.
81.
Zhang
,
W.
,
Chen
,
X.-X.
,
Liu
,
Y.-M.
,
Liu
,
D.-Y.
,
Du
,
Y.-F.
,
Chen
,
X.-P.
, and
Zou
,
C.-Q.
,
2018
, “
The Role of Phosphorus Supply in Maximizing the Leaf Area, Photosynthetic Rate, Coordinated to Grain Yield of Summer Maize
,”
Field Crops Res.
,
219
, pp.
113
119
.
82.
Jørgensen
,
S. E.
,
2002
, “
Explanation of Ecological Rules and Observation by Application of Ecosystem Theory and Ecological Models
,”
Ecol. Modell.
,
158
(
3
), pp.
241
248
.
83.
Yang
,
X. S.
, and
Zhang
,
J. J.
,
2005
, “
Modelling and Animating Hand Wrinkles
,”
5th International Conference on Computational Science—ICCS 2005
,
Atlanta, GA
,
May 22–25
,
Springer-Verlag
,
Berlin/Heidelberg
, pp.
199
206
.
84.
d’Eon
,
E.
,
Luebke
,
D.
, and
Enderton
,
E.
,
2007
, “
Efficient Rendering of Human Skin
,”
Proceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR’07
,
Goslar, Germany
,
June 25–27
, pp.
147
157
.
85.
Altair Acquires SIMSOLID
,
2018
, “
Altair Engineering
,” https://www.altair.com/newsdetail/?news_id=11555
86.
Zbiciak
,
R.
, and
Grabowik
,
C.
,
2017
, “
Feature Recognition Methods Review
,”
Proceedings of the 13th International Scientific Conference. RESRB 2016. Lecture Notes in Mechanical Engineering
,
E.
Rusiński
, and
D.
Pietrusiak
, eds.,
Springer
,
Cham
, pp.
605
615
.
87.
Aremu
,
A. O.
,
Brennan-Craddock
,
J. P. J.
,
Panesar
,
A.
,
Ashcroft
,
I. A.
,
Hague
,
R. J. M.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
.
88.
He
,
T.
,
Hong
,
L.
,
Kaufman
,
A.
,
Varshney
,
A.
, and
Wang
,
S.
,
1995
, “
Voxel Based Object Simplification
,”
Proceedings Visualization’95
,
Monterey, CA
,
Oct. 29– Nov. 3
,
IEEE Computer Society Press
, pp.
296
303
.
89.
Nooruddin
,
F. S.
, and
Turk
,
G.
,
2003
, “
Simplification and Repair of Polygonal Models Using Volumetric Techniques
,”
IEEE Trans. Vis. Comput. Graph.
,
9
(
2
), pp.
191
205
.
90.
Telea
,
A.
, and
Jalba
,
A.
,
2011
, “
Voxel-Based Assessment of Printability of 3D Shapes
,”
Proceedings of the 10th International Conference on Mathematical Morphology and Its Applications to Image and Signal Processing
,
Berlin, Germany
,
July 6–8
, Springer-Verlag, pp.
393
404
.
91.
Gobert
,
C.
,
Reutzel
,
E. W.
,
Petrich
,
J.
,
Nassar
,
A. R.
, and
Phoha
,
S.
,
2018
, “
Application of Supervised Machine Learning for Defect Detection During Metallic Powder Bed Fusion Additive Manufacturing Using High Resolution Imaging
,”
Addit. Manuf.
,
21
, pp.
517
528
.
92.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
ACM SIGGRAPH Comput. Graph.
,
21
(
4
), pp.
163
169
.
93.
Newman
,
T. S.
, and
Yi
,
H.
,
2006
, “
A Survey of the Marching Cubes Algorithm
,”
Comput. Graph.
,
30
(
5
), pp.
854
879
.
94.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
,
1995
, “
A Fast Level Set Method for Propagating Interfaces
,”
J. Comput. Phys.
,
118
(
2
), pp.
269
277
.
95.
Kauker
,
D.
,
Falk
,
M.
,
Reina
,
G.
,
Ynnerman
,
A.
, and
Ertl
,
T.
,
2016
, “
VoxLink—Combining Sparse Volumetric Data and Geometry for Efficient Rendering
,”
Comput. Vis. Media
,
2
(
1
), pp.
45
56
.
96.
Marcus
,
R. C.
,
2017
, “
Level-of-Detail Independent Voxel-Based Surface Approximations
,”
Utrecht University
, https://dspace.library.uu.nl/handle/1874/348818
97.
Rom
,
M.
, and
Brakhage
,
K.-H.
,
2011
,
Volume Mesh Generation for Numerical Flow Simulations Using Catmull-Clark and Surface Approximation Methods.
,
Institut für Geometrie und Praktische Mathematik
,
Aachen
.
98.
Fuchs
,
R.
,
Welker
,
V.
, and
Hornegger
,
J.
,
2010
, “
Non-Convex Polyhedral Volume of Interest Selection
,”
Comput. Med. Imag. Graph.
,
34
(
2
), pp.
105
113
.
99.
Massarwi
,
F.
, and
Elber
,
G.
,
2016
, “
A B-Spline Based Framework for Volumetric Object Modeling
,”
Comput. Aided Des.
,
78
, pp.
36
47
.
100.
Wassermann
,
B.
,
Korshunova
,
N.
,
Kollmannsberger
,
S.
,
Rank
,
E.
, and
Elber
,
G.
,
2020
, “
Finite Cell Method for Functionally Graded Materials Based on V-Models and Homogenized Microstructures
,”
Adv. Model. Simul. Eng. Sci.
,
7
(
1
), p.
49
.
101.
Antolin
,
P.
,
Buffa
,
A.
, and
Martinelli
,
M.
,
2019
, “
Isogeometric Analysis on V-Reps: First Results
,”
Comput. Methods Appl. Mech. Eng.
,
355
, pp.
976
1002
.
102.
Massarwi
,
F.
,
Antolin
,
P.
, and
Elber
,
G.
,
2019
, “
Volumetric Untrimming: Precise Decomposition of Trimmed Trivariates Into Tensor Products
,”
Comput. Aided Geom. Des.
,
71
, pp.
1
15
.
103.
Burkhart
,
D.
,
Hamann
,
B.
, and
Umlauf
,
G.
,
2010
, “
Iso-Geometric Finite Element Analysis Based on Catmull-Clark Subdivision Solids
,”
Comput. Graph. Forum
,
29
(
5
), pp.
1575
1584
.
104.
Hahmann
,
S.
,
Bonneau
,
G.-P.
,
Barbier
,
S.
,
Elber
,
G.
, and
Hagen
,
H.
,
2012
, “
Volume-Preserving FFD for Programmable Graphics Hardware
,”
Vis. Comput.
,
28
(
3
), pp.
231
245
.
105.
Ma
,
H.
, and
Schewe
,
K.-D.
,
2011
, “Conceptual Geometric Modelling,”
Handbook of Conceptual Modeling
,
D. W.
Embley
, and
B.
Thalheim
, eds.,
Springer
,
Berlin
, pp.
421
440
.
106.
Chen
,
F.
,
Dokken
,
C.
,
Grandine
,
T. A.
, and
Morin
,
G.
,
2017
, “
Geometric Modelling, Interoperability and New Challenges (Dagstuhl Seminar 17221)
,”
Dagstuhl Rep.
,
7
(
5
), pp.
140
168
.
107.
Rawson
,
S. D.
,
Margetts
,
L.
,
Wong
,
J. K. F.
, and
Cartmell
,
S. H.
,
2015
, “
Sutured Tendon Repair; a Multi-Scale Finite Element Model
,”
Biomech. Model. Mechanobiol.
,
14
(
1
), pp.
123
133
.
108.
Luebke
,
D.
,
Reddy
,
M.
,
Cohen
,
J. D.
,
Varshney
,
A.
,
Watson
,
B.
, and
Huebner
,
R.
,
2002
,
Level of Detail for 3D Graphics
,
Elsevier
,
New York, NY
.
109.
Borrmann
,
A.
,
Kolbe
,
T. H.
,
Donaubauer
,
A.
,
Steuer
,
H.
,
Jubierre
,
J. R.
, and
Flurl
,
M.
,
2015
, “
Multi-Scale Geometric-Semantic Modeling of Shield Tunnels for GIS and BIM Applications
,”
Comput. Aided Civ. Infrastruct. Eng.
,
30
(
4
), pp.
263
281
.
110.
Agugiaro
,
G.
,
Remondino
,
F.
,
Girardi
,
G.
,
von Schwerin
,
J.
,
Richards-Rissetto
,
H.
, and
De Amicis
,
R.
,
2011
, “
A Web-Based Interactive Tool for Multi-Resolution 3D Models of a Maya Archaeological Site
,”
Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci.
,
XXXVIII-5
, pp.
23
30
.
111.
Sacks
,
M. S.
,
Khalighi
,
A.
,
Rego
,
B.
,
Ayoub
,
S.
, and
Drach
,
A.
,
2017
, “
On the Need for Multi-Scale Geometric Modelling of the Mitral Heart Valve
,”
Healthc. Technol. Lett.
,
4
(
5
), p.
150
.
112.
Tian
,
F.
,
Hua
,
W.
,
Dong
,
Z.
, and
Bao
,
H.
,
2010
, “
Adaptive Voxels: Interactive Rendering of Massive 3D Models
,”
Vis. Comput.
,
26
(
6–8
), pp.
409
419
.
113.
Limper
,
M.
,
Jung
,
Y.
,
Behr
,
J.
, and
Alexa
,
M.
,
2013
, “
The POP Buffer: Rapid Progressive Clustering by Geometry Quantization
,”
Comput. Graph. Forum
,
32
(
7
), pp.
197
206
.
114.
0 FPS
,
2018
, “
A Level of Detail Method for Blocky Voxels
,” https://0fps.net/2018/03/03/a-level-of-detail-method-for-blocky-voxels/
115.
Seemann
,
P.
,
Fuhrmann
,
S.
,
Guthe
,
S.
,
Langguth
,
F.
, and
Goesele
,
M.
,
2016
, “
Simplification of Multi-Scale Geometry Using Adaptive Curvature Fields
,” http://arxiv.org/abs/1610.07368
116.
Tao
,
W.
, and
Leu
,
M. C.
,
2016
, “
Design of Lattice Structure for Additive Manufacturing
,”
2016 International Symposium on Flexible Automation (ISFA)
,
Cleveland, OH
,
Aug. 1–3
, IEEE, pp.
325
332
.
117.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
118.
Frulloni
,
E.
,
Kenny
,
J. M.
,
Conti
,
P.
, and
Torre
,
L.
,
2007
, “
Experimental Study and Finite Element Analysis of the Elastic Instability of Composite Lattice Structures for Aeronautic Applications
,”
Compos. Struct.
,
78
(
4
), pp.
519
528
.
119.
Martínez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
35
(
4
), pp.
44:1
44:12
.
120.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3D Printing
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
13
.
121.
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
A Hybrid Geometric Modeling Method for Lattice Structures Fabricated by Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
4011
4030
.
122.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
.
123.
Liu
,
Y.
,
Zheng
,
G.
,
Letov
,
N.
, and
Zhao
,
Y. F.
,
2020
, “
A Survey of Modeling and Optimization Methods for Multi-Scale Heterogeneous Lattice Structures
,”
ASME J. Mech. Des.
,
143
(
4
), p.
040803
.
124.
An
,
X.
, and
Fan
,
H.
,
2016
, “
Hybrid Design and Energy Absorption of Luffa-Sponge-Like Hierarchical Cellular Structures
,”
Mater. Des.
,
106
, pp.
247
257
.
125.
Douglas
,
T.
,
2003
, “
A Bright Bio-Inspired Future
,”
Science
,
299
(
5610
), pp.
1192
1193
.
126.
Jang
,
K.-I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
,
Kim
,
G.-T.
,
Han
,
S. Y.
,
Lee
,
J. W.
,
Kim
,
J.
,
Cho
,
M.
,
Miao
,
F.
,
Yang
,
Y.
,
Jung
,
H. N.
,
Flavin
,
M.
,
Liu
,
H.
,
Kong
,
G. W.
,
Yu
,
K. J.
,
Rhee
,
S. I.
,
Chung
,
J.
,
Kim
,
B.
,
Kwak,
J. W.
,
Yun
,
M. H.
,
Kim
,
J. Y.
,
Song
,
Y. M.
,
Paik
,
U.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
(
1
), p.
6566
.
127.
Naboni
,
R.
, and
Kunic
,
A.
,
2017
, “
Design and Additive Manufacturing of Lattice-Based Cellular Solids at Building Scale
,”
Blucher Design Proceedings
,
Concepción, Chile
,
Nov. 22–24
, pp.
369
375
.
128.
Zheng
,
Y.
,
2019
,
Bioinspired Design of Materials Surfaces
,
K. D.
Santos
, ed., 1st ed.,
Elsevier
,
Cambridge, MA
, pp.
27
97
.
129.
Liu
,
K.
,
Yao
,
X.
, and
Jiang
,
L.
,
2010
, “
Recent Developments in Bio-Inspired Special Wettability
,”
Chem. Soc. Rev.
,
39
(
8
), p.
3240
.
130.
Hancock
,
M. J.
,
Sekeroglu
,
K.
, and
Demirel
,
M. C.
,
2012
, “
Bioinspired Directional Surfaces for Adhesion, Wetting, and Transport
,”
Adv. Funct. Mater.
,
22
(
11
), pp.
2223
2234
.
131.
Liu
,
K.
,
Cao
,
M.
,
Fujishima
,
A.
, and
Jiang
,
L.
,
2014
, “
Bio-Inspired Titanium Dioxide Materials With Special Wettability and Their Applications
,”
Chem. Rev.
,
114
(
19
), pp.
10044
10094
.
132.
Smith
,
M.
,
Guan
,
Z.
, and
Cantwell
,
W. J.
,
2013
, “
Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Int. J. Mech. Sci.
,
67
, pp.
28
41
.
133.
Kucewicz
,
M.
,
Baranowski
,
P.
,
Małachowski
,
J.
,
Popławski
,
A.
, and
Płatek
,
P.
,
2018
, “
Modelling, and Characterization of 3D Printed Cellular Structures
,”
Mater. Des.
,
142
, pp.
177
189
.
134.
Lozanovski
,
B.
,
Leary
,
M.
,
Tran
,
P.
,
Shidid
,
D.
,
Qian
,
M.
,
Choong
,
P.
, and
Brandt
,
M.
,
2019
, “
Computational Modelling of Strut Defects in SLM Manufactured Lattice Structures
,”
Mater. Des.
,
171
, p.
107671
.
135.
Leonardi
,
F.
,
Graziosi
,
S.
,
Casati
,
R.
,
Tamburrino
,
F.
, and
Bordegoni
,
M.
,
2019
, “
Additive Manufacturing of Heterogeneous Lattice Structures: An Experimental Exploration
,”
Proc. Des. Soc.: Int. Conf. Eng. Des.
,
1
(
1
), pp.
669
678
.
136.
Gümrük
,
R.
, and
Mines
,
R. A. W.
,
2013
, “
Compressive Behaviour of Stainless Steel Micro-Lattice Structures
,”
Int. J. Mech. Sci.
,
68
, pp.
125
139
.
137.
Kale
,
S.
,
Khani
,
N.
,
Nadernezhad
,
A.
, and
Koc
,
B.
,
2017
, “
Modeling and Additive Manufacturing of Biomimetic Heterogeneous Scaffold
,”
Procedia CIRP
,
65
, pp.
48
55
.
138.
Tang
,
Y.
,
Dong
,
G.
,
Zhou
,
Q.
, and
Zhao
,
Y. F.
,
2018
, “
Lattice Structure Design and Optimization With Additive Manufacturing Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1546
1562
.
139.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Process.
,
20
, pp.
444
449
.
140.
Kurtz
,
A.
,
2015
, “
Intralatice. Case Studies
,” http://intralattice.com/case_studies/
141.
Tang
,
Y.
,
Yang
,
S.
, and
Zhao
,
Y. F.
,
2016
, “
Design Method for Conformal Lattice-Skin Structure Fabricated by AM Technologies
,”
Volume 1A: 36th Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
American Society of Mechanical Engineers
, p.
V01AT02A037
.
142.
F EQUALS F LLC
,
2019
, “
F = f: Crystallon
,” http://fequalsf.blogspot.com/p/crystallon.html
143.
García-Dominguez
,
A.
,
Claver
,
J.
, and
Sebastián
,
M. A.
,
2020
, “
Optimization Methodology for Additive Manufacturing of Customized Parts by Fused Deposition Modeling (FDM). Application to a Shoe Heel
,”
Polymers
,
12
(
9
), p.
2119
.
144.
General Lattice
,
2020
, “
Additive Manufacturing—Design Studion
,” Studio, https://www.generallattice.com/studio
145.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
146.
Chen
,
W.
,
Zheng
,
X.
, and
Liu
,
S.
,
2018
, “
Finite-Element-Mesh Based Method for Modeling and Optimization of Lattice Structures for Additive Manufacturing
,”
Materials
,
11
(
11
), p.
2073
.
147.
University of Alberta
,
2001
, “
University of Alberta ANSYS Tutorial
,” ANSYS Command File Programming Features, https://sites.ualberta.ca/~wmoussa/AnsysTutorial/CL/Features.html
148.
Portela
,
C. M.
,
Greer
,
J. R.
, and
Kochmann
,
D. M.
,
2018
, “
Impact of Node Geometry on the Effective Stiffness of Non-Slender Three-Dimensional Truss Lattice Architectures
,”
Extreme Mech. Lett.
,
22
, pp.
138
148
.
149.
Savio
,
G.
,
Meneghello
,
R.
, and
Concheri
,
G.
,
2019
, “
Design of Variable Thickness Triply Periodic Surfaces for Additive Manufacturing
,”
Prog. Addit. Manuf.
,
4
(
3
), pp.
281
290
.
150.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P.-A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graph. Models
,
73
(
5
), pp.
165
181
.
151.
Cartwright
,
R.
,
Adzhiev
,
V.
,
Pasko
,
A. A.
,
Goto
,
Y.
, and
Kunii
,
T. L.
,
2005
, “
Web-Based Shape Modeling With HyperFun
,”
IEEE Comput. Graph. Appl.
,
25
(
2
), pp.
60
69
.
152.
Yang
,
N.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2015
, “
Novel Real Function Based Method to Construct Heterogeneous Porous Scaffolds and Additive Manufacturing for Use in Medical Engineering
,”
Med. Eng. Phys.
,
37
(
11
), pp.
1037
1046
.
153.
Li
,
D.
,
Liao
,
W.
,
Dai
,
N.
,
Dong
,
G.
,
Tang
,
Y.
, and
Xie
,
Y. M.
,
2018
, “
Optimal Design and Modeling of Gyroid-Based Functionally Graded Cellular Structures for Additive Manufacturing
,”
Comput. Aided Des.
,
104
, pp.
87
99
.
154.
Wang
,
Y.
,
Zhang
,
L.
,
Daynes
,
S.
,
Zhang
,
H.
,
Feih
,
S.
, and
Wang
,
M. Y.
,
2018
, “
Design of Graded Lattice Structure With Optimized Mesostructures for Additive Manufacturing
,”
Mater. Des.
,
142
, pp.
114
123
.
155.
Liu
,
X.
, and
Shapiro
,
V.
,
2018
, “
Multiscale Shape–Material Modeling by Composition
,”
Comput. Aided Des.
,
102
, pp.
194
203
.
156.
Schoen
,
A. H.
,
1970
,
Infinite Periodic Minimal Surfaces Without Self-Intersections
,
National Aeronautics and Space Administration (NASA)
,
Washington, DC
.
157.
Gan
,
Z.
,
Turner
,
M. D.
, and
Gu
,
M.
,
2016
, “
Biomimetic Gyroid Nanostructures Exceeding Their Natural Origins
,”
Sci. Adv.
,
2
(
5
), p.
e1600084
.
158.
Longley
,
W.
, and
McIntosh
,
T. J.
,
1983
, “
A Bicontinuous Tetrahedral Structure in a Liquid-Crystalline Lipid
,”
Nature
,
303
(
5918
), pp.
612
614
.
159.
Adzhiev
,
V.
,
Cartwright
,
R.
,
Fausett
,
E.
,
Ossipov
,
A.
,
Pasko
,
A. A.
, and
Savchenko
,
V. V.
,
1999
, “
HyperFun Project: Language and Software Tools for F-Rep Shape Modeling
,”
Comput. Graph. Geom.
,
1
, pp.
75
100
.
160.
Tereshin
,
A.
,
Adzhiev
,
V.
,
Fryazinov
,
O.
, and
Pasko
,
A.
,
2019
, “Hybrid Function Representation With Distance Properties,”
Eurographics 2019—Short Papers
,
P.
Cignoni
, and
E.
Miguel
, eds.,
The Eurographics Association
,
Genoa
, pp.
17
20
.
161.
Katopodes
,
N. D.
,
2019
,
Free-Surface Flow
,
K.
McCombs
, ed.,
Elsevier
,
New York
, pp.
804
828
.
162.
Kawamoto
,
R.
,
Andò
,
E.
,
Viggiani
,
G.
, and
Andrade
,
J. E.
,
2016
, “
Level Set Discrete Element Method for Three-Dimensional Computations With Triaxial Case Study
,”
J. Mech. Phys. Solids
,
91
, pp.
1
13
.
163.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
2013
,
Functionally Graded Materials: Design, Processing and Applications
,
Springer Science & Business Media
,
Berlin, Germany
.
164.
Boyer
,
C. B.
, and
Merzbach
,
U. C.
,
1991
,
A History of Mathematics
, 2nd ed.,
Wiley
,
New York
.
165.
Egan
,
P.
,
Sinko
,
R.
,
LeDuc
,
P. R.
, and
Keten
,
S.
,
2015
, “
The Role of Mechanics in Biological and Bio-Inspired Systems
,”
Nat. Commun.
,
6
(
1
), p.
7418
.
166.
Voss
,
R. F.
,
1988
, “Fractals in Nature: From Characterization to Simulation,”
The Science of Fractal Images
,
H.-O.
Peitgen
, and
D.
Saupe
, eds.,
Springer
,
New York
, pp.
21
70
.
167.
Zhou
,
Z.
,
Alégot
,
H.
, and
Irvine
,
K. D.
,
2019
, “
Oriented Cell Divisions Are Not Required for Drosophila Wing Shape
,”
Curr. Biol.
,
29
(
5
), pp.
856
864.e3
.
168.
Cheng
,
L.
,
Bai
,
J.
, and
To
,
A. C.
,
2019
, “
Functionally Graded Lattice Structure Topology Optimization for the Design of Additive Manufactured Components With Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
334
359
.
169.
ANSI
,
2016
, “
ISO 10303-21:2016. Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure
,” ANSI, https://webstore.ansi.org/Standards/ISO/ISO10303212016
170.
Chang
,
K.-H.
,
2014
,
Product Design Modeling Using CAD/CAE: The Computer Aided Engineering Design Series
,
Academic Press
,
Cambridge, MA
.
171.
Grimm
,
T.
,
2004
,
User’s Guide to Rapid Prototyping
,
Society of Manufacturing Engineers
,
Southfield, MI
.
172.
PTC
,
2019
, “
Material Homogenization for Lattice Simulation in Additive Manufacturing
,” https://support.ptc.com/help/creo/creo_pma/r6.0/usascii/whats_new_pma/addmanu-material_homogenization_lattice_simulation.html
173.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
,
Weisgraber
,
T.
, and
Spadaccini
,
C. M.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
.
174.
Antolin
,
P.
,
Buffa
,
A.
,
Cohen
,
E.
,
Dannenhoffer
,
J. F.
,
Elber
,
G.
,
Elgeti
,
S.
,
Haimes
,
R.
, and
Riesenfeld
,
R.
,
2019
, “
Optimizing Micro-Tiles in Micro-Structures as a Design Paradigm
,”
Comput. Aided Des.
,
115
, pp.
23
33
.
175.
Liu
,
T.-L.
,
Upadhyayula
,
S.
,
Milkie
,
D. E.
,
Singh
,
V.
,
Wang
,
K.
,
Swinburne
,
I. A.
,
Mosaliganti
,
K. R.
,
Collins
,
Z. M.
,
Hiscock
,
T. W.
,
Shea
,
J.
,
Kohrman
,
A. Q.
,
Medwig
,
T. N.
,
Dambournet
,
D.
,
Forster
,
R.
,
Cunniff
,
B.
,
Ruan
,
Y.
,
Yashiro
,
H.
,
Scholpp
,
S.
,
Meyerowitz
,
E. M.
,
Hockemeyer
,
D.
,
Drubin
,
D. G.
,
Martin
,
B. L.
,
Matus
,
D. Q.
,
Koyama
,
M.
,
Megason
,
S. G.
,
Kirchhausen
,
T.
, and
Betzig
,
E.
,
2018
, “
Observing the Cell in Its Native State: Imaging Subcellular Dynamics in Multicellular Organisms
,”
Science
,
360
(
6386
), p.
eaaq1392
.
176.
Smith
,
H. F.
,
Parker
,
W.
,
Kotzé
,
S. H.
, and
Laurin
,
M.
,
2017
, “
Morphological Evolution of the Mammalian Cecum and Cecal Appendix
,”
C.R. Palevol
,
16
(
1
), pp.
39
57
.
177.
Bass
,
L.
,
Clements
,
P.
, and
Kazman
,
R.
,
2013
,
Software Architecture in Practice
, SEI Series in Software Engineering,
Addison-Wesley
,
Upper Saddle River, NJ
.
178.
C3D Labs
,
2020
, “
Multi-Thread Support Arrives in C3D Toolkit
,” C3D Toolkit, https://c3dlabs.com/en/blog/tech-tips/multi-thread-support-arrives-in-c3d-toolkit/
179.
Urbańczyk
,
A.
,
Wright
,
J.
,
Cowden
,
D.
,
Solutions
,
I. T.
,
Özderya
,
H. Y.
,
Boyd
,
M.
,
Agostini
,
B.
,
Greminger
,
M.
,
Buchanan
,
J.
,
León Peque
,
M. S.
, de
,
Boin
,
P.
,
Saville
,
W.
,
Weissinger
,
B.
,
Osterwood
,
C.
,
Kono
,
A.
,
Levering
,
H.
,
Turner
,
W.
,
Trhoň
,
A.
,
Christoforo
,
G.
,
Peterson
,
A.
,
Grunichev
,
A.
,
Gregg-Smith
,
A.
, and
Anderson
,
A.
,
2021
, “
CadQuery 2.1
,”
CadQuery/Cadquery
.
You do not currently have access to this content.